Quantitative Analysis and IBM® SPSS® Statistics A Guide for Business and Finance /

This guide is for practicing statisticians and data scientists who use IBM SPSS for statistical analysis of big data in business and finance. This is the first of a two-part guide to SPSS for Windows, introducing data entry into SPSS, along with elementary statistical and graphical methods for summa...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Aljandali, Abdulkader (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Statistics and Econometrics for Finance,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04097nam a22005175i 4500
001 978-3-319-45528-0
003 DE-He213
005 20161109165713.0
007 cr nn 008mamaa
008 161108s2016 gw | s |||| 0|eng d
020 |a 9783319455280  |9 978-3-319-45528-0 
024 7 |a 10.1007/978-3-319-45528-0  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a K  |2 bicssc 
072 7 |a BUS061000  |2 bisacsh 
082 0 4 |a 330.015195  |2 23 
100 1 |a Aljandali, Abdulkader.  |e author. 
245 1 0 |a Quantitative Analysis and IBM® SPSS® Statistics  |h [electronic resource] :  |b A Guide for Business and Finance /  |c by Abdulkader Aljandali. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXI, 184 p. 143 illus., 119 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics and Econometrics for Finance,  |x 2199-093X 
505 0 |a 1 Getting Started with SPSS -- 2 Graphics and Introductory Statistical Analysis of Data -- 3 Frequencies and Crosstabulations -- 4 Coding, Missing Values, Conditional and Arithmetic Operations -- 5 Hypothesis Tests Concerning Means -- 6 Nonparametric Hypothesis Tests -- 7 Bivariate Correlation and Regression -- 8 Multivariate Regression -- 9 Logistic Regression. 
520 |a This guide is for practicing statisticians and data scientists who use IBM SPSS for statistical analysis of big data in business and finance. This is the first of a two-part guide to SPSS for Windows, introducing data entry into SPSS, along with elementary statistical and graphical methods for summarizing and presenting data. Part I also covers the rudiments of hypothesis testing and business forecasting while Part II will present multivariate statistical methods, more advanced forecasting methods, and multivariate methods. IBM SPSS Statistics offers a powerful set of statistical and information analysis systems that run on a wide variety of personal computers. The software is built around routines that have been developed, tested, and widely used for more than 20 years. As such, IBM SPSS Statistics is extensively used in industry, commerce, banking, local and national governments, and education. Just a small subset of users of the package include the major clearing banks, the BBC, British Gas, British Airways, British Telecom, the Consumer Association, Eurotunnel, GSK, TfL, the NHS, Shell, Unilever, and W.H.S. Although the emphasis in this guide is on applications of IBM SPSS Statistics, there is a need for users to be aware of the statistical assumptions and rationales underpinning correct and meaningful application of the techniques available in the package; therefore, such assumptions are discussed, and methods of assessing their validity are described. Also presented is the logic underlying the computation of the more commonly used test statistics in the area of hypothesis testing. Mathematical background is kept to a minimum. Abdulkader Aljandali, Ph.D., is a Senior Lecturer in Quantitative Finance and Business Forecasting at Regent’s University London. He acts as a visiting professor at overseas institutions in Canada, France, and Morocco. 
650 0 |a Statistics. 
650 0 |a Business enterprises  |x Finance. 
650 0 |a Big data. 
650 0 |a Economics, Mathematical. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Big Data/Analytics. 
650 2 4 |a Business Finance. 
650 2 4 |a Quantitative Finance. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319455273 
830 0 |a Statistics and Econometrics for Finance,  |x 2199-093X 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-45528-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)