Music Through Fourier Space Discrete Fourier Transform in Music Theory /

This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, salienc...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Amiot, Emmanuel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Computational Music Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03063nam a22005655i 4500
001 978-3-319-45581-5
003 DE-He213
005 20161026080302.0
007 cr nn 008mamaa
008 161026s2016 gw | s |||| 0|eng d
020 |a 9783319455815  |9 978-3-319-45581-5 
024 7 |a 10.1007/978-3-319-45581-5  |2 doi 
040 |d GrThAP 
050 4 |a NX260 
072 7 |a H  |2 bicssc 
072 7 |a UB  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a ART000000  |2 bisacsh 
082 0 4 |a 004  |2 23 
100 1 |a Amiot, Emmanuel.  |e author. 
245 1 0 |a Music Through Fourier Space  |h [electronic resource] :  |b Discrete Fourier Transform in Music Theory /  |c by Emmanuel Amiot. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XV, 206 p. 129 illus., 45 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational Music Science,  |x 1868-0305 
505 0 |a Discrete Fourier Transform of Distributions -- Homometry and the Phase Retrieval Problem -- Nil Fourier Coefficients and Tilings -- Saliency -- Continuous Spaces, Continuous Fourier Transform -- Phases of Fourier Coefficients. 
520 |a This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients. This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems. 
650 0 |a Computer science. 
650 0 |a Music. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Application software. 
650 0 |a Mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer Appl. in Arts and Humanities. 
650 2 4 |a Music. 
650 2 4 |a Mathematics in Music. 
650 2 4 |a Mathematics of Computing. 
650 2 4 |a User Interfaces and Human Computer Interaction. 
650 2 4 |a Signal, Image and Speech Processing. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319455808 
830 0 |a Computational Music Science,  |x 1868-0305 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-45581-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)