Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type Spaces
This book provides a systematic overview of the theory of Taylor coefficients of functions in some classical spaces of analytic functions and especially of the coefficient multipliers between spaces of Hardy type. Offering a comprehensive reference guide to the subject, it is the first of its kind i...
Main Authors: | , , |
---|---|
Corporate Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Series: | RSME Springer Series,
2 |
Subjects: | |
Online Access: | Full Text via HEAL-Link |
Table of Contents:
- 1 Basic Spaces. Multipliers
- 2 The Poisson Integral
- 3 Subharmonic and h-subharmonic Functions
- 4 Hardy Spaces of Analytic Functions
- 5 Carleson Measures, Mean Oscillation Spaces and Duality
- 6 Polynomial Approximation and Taylor Coefficients of Hp Functions
- 7 The Mixed Norm Spaces Hp,q,α
- 8 Hp,q,α as a Sequence Space
- 9 Tensor Products and Multipliers
- 10 Duality and Multipliers
- 11 Multipliers From Hp and Hp,q,α Spaces to ℓs
- 12 Multiplier Spaces (Hp,q,α,Hu,v,β) and (Hp,Hu)
- 13 Multipliers of Some Large Spaces of Analytic Functions
- 14 The Hilbert Matrix Operator.