Unified Lagrangian Formulation for Fluid and Solid Mechanics, Fluid-Structure Interaction and Coupled Thermal Problems Using the PFEM
This book treats the derivation and implementation of a unified particle finite element formulation for the solution of fluid and solid mechanics, Fluid-Structure Interaction (FSI) and coupled thermal problems. FSI problems are involved in many engineering branches, from aeronautics to civil and bi...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2017.
|
Σειρά: | Springer Theses, Recognizing Outstanding Ph.D. Research,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1 Introduction
- 1.1 Objectives
- 1.2 State of the art
- 1.2.1 Eulerian and Lagrangian approaches for free surface flow analysis
- 1.2.2 Stabilization techniques
- 1.2.3 Algorithms for FSI problems
- 1.3 Numerical model
- 1.3.1 Reasons
- 1.3.2 Essential features
- 1.3.3 Outline
- 1.4 Publications
- 2 Velocity-based formulations for compressible materials
- 2.1 Velocity formulation
- 2.1.1 From the local form to the spatial semi-discretization
- 2.1.2 Time integration
- 2.1.3 Linearization
- 2.1.4 Incremental solution scheme
- 2.2 Mixed velocity-pressure formulation
- 2.2.1 Quasi-incompressible form of the continuity equation
- 2.2.2 Solution method
- 2.3 Hypoelasticity
- 2.3.1 Velocity formulation for hypoelastic solids
- 2.3.2 Mixed Velocity-Pressure formulation for hypoelastic solids
- 2.3.3 Theory of plasticity
- 2.3.3.1 Hypoelastic-plastic materials
- 2.3.4 Validation examples
- 2.4 Summary and conclusions
- 3 Unified stabilized formulation for quasi-incompressible materials
- 3.1 Stabilized FIC form of the mass balance equation
- 3.1.1 Governing equations
- 3.1.2 FIC mass balance equation in space and in time
- 3.1.3 FIC stabilized local form of the mass balance equation
- 3.1.4 Variational form
- 3.1.5 FEM discretization and matrix form
- 3.2 Solution scheme for quasi-incompressible Newtonian fluids
- 3.2.1 Governing equations
- 3.2.2 Solution scheme
- 3.3 Solution scheme for quasi-incompressible hypoelastic solids
- 3.4 Free surface flow analysis
- 3.4.1 The Partiele Finite Element Method
- 3.4.1.1 Remeshing
- 3.4.1.2 Basic steps
- 3.4.1.3 Advantages and disadvantages
- 3.4.2 Mass conservation analysis
- 3.4.2.1 Numerical examples
- 3.4.3 Analysis of the conditioning of the solution scheme
- 3.4.3.1 Drawbacks associated to the real bulk modulus
- 3.4.3.2 Optimum value for the pseudo bulk modulus
- 3.4.3.3 Numerical examples
- 3.5 Validation examples
- 3.5.1 Validation of the Unified formulation for Newtonian fluids
- 3.5.2 Validation of the Unified formulation for quasi-incompressible hypoelastic solids
- 3.6 Summary and conclusions
- 4 Unified formulation for F SI problems
- 4.1 Introduction
- 4.2 FSI algorithm
- 4.3 Coupling with the Velocity formulation for the solid
- 4.4 Coupling with the mixed Velocity-Pressure formulation for the solid
- 4.5 Numerical examples
- 4.6 Summary and conclusions
- 5 Coupled thermal-mechanical formulation
- 5.1 Introduction
- 5.2 Heat problem
- 5.2.1 FEM discretization and solution for a time step
- 5.3 Thermal coupling
- 5.3.1 Numerical examples
- 5.4 Phase change
- 5.4.1 Numerical example: melting of an ice block
- 5.5 Summary and conclusions
- 6 Industrial application: PFEM Analysis Model of NPP Severe Accident
- 6.1 Introduction
- 6.1.1 Assumptions allowed by the specification
- 6.2 Numerical method
- 6.3 Basic Model
- 6.3.1 Problem data
- 6.3.2 Preliminary study
- 6.3.3 Numerical results
- 6.4 Detailed model
- 6.4.1 Problem data
- 6.4.2 Preliminary study
- 6.4.3 Numerical results
- 6.5 Summary and conclusions
- 7 Conclusions and future lines of research
- 7.1 Contributions
- 7.2 Lines for future work.