Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory

Lieb-Robinson bounds for multi-commutators are effective mathematical tools to handle analytic aspects of infinite volume dynamics of non-relativistic quantum particles with short-range, possibly time-dependent interactions. In particular, the existence of fundamental solutions is shown for those (n...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bru, J.-B (Συγγραφέας), de Siqueira Pedra, W. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in Mathematical Physics, 13
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03382nam a22005415i 4500
001 978-3-319-45784-0
003 DE-He213
005 20161201113634.0
007 cr nn 008mamaa
008 161201s2017 gw | s |||| 0|eng d
020 |a 9783319457840  |9 978-3-319-45784-0 
024 7 |a 10.1007/978-3-319-45784-0  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Bru, J.-B.  |e author. 
245 1 0 |a Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory  |h [electronic resource] /  |c by J.-B. Bru, W. de Siqueira Pedra. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a VII, 109 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 13 
505 0 |a Introduction -- Algebraic Quantum Mechanics -- Algebraic Setting for Interacting Fermions on the Lattice -- Lieb–Robinson Bounds for Multi–Commutators -- Lieb–Robinson Bounds for Non–Autonomous Dynamics -- Applications to Conductivity Measures. 
520 |a Lieb-Robinson bounds for multi-commutators are effective mathematical tools to handle analytic aspects of infinite volume dynamics of non-relativistic quantum particles with short-range, possibly time-dependent interactions. In particular, the existence of fundamental solutions is shown for those (non-autonomous) C*-dynamical systems for which the usual conditions found in standard theories of (parabolic or hyperbolic) non-autonomous evolution equations are not given. In mathematical physics, bounds on multi-commutators of an order higher than two can be used to study linear and non-linear responses of interacting particles to external perturbations. These bounds are derived for lattice fermions, in view of applications to microscopic quantum theory of electrical conduction discussed in this book. All results also apply to quantum spin systems, with obvious modifications. In order to make the results accessible to a wide audience, in particular to students in mathematics with little Physics background, basics of Quantum Mechanics are presented, keeping in mind its algebraic formulation. The C*-algebraic setting for lattice fermions, as well as the celebrated Lieb-Robinson bounds for commutators, are explained in detail, for completeness. 
650 0 |a Physics. 
650 0 |a Functional analysis. 
650 0 |a Mathematical physics. 
650 0 |a Condensed matter. 
650 0 |a Quantum computers. 
650 0 |a Spintronics. 
650 1 4 |a Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Condensed Matter Physics. 
650 2 4 |a Quantum Information Technology, Spintronics. 
700 1 |a de Siqueira Pedra, W.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319457833 
830 0 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 13 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-45784-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)