Quadratic Residues and Non-Residues Selected Topics /

This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapt...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wright, Steve (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Lecture Notes in Mathematics, 2171
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03554nam a22005775i 4500
001 978-3-319-45955-4
003 DE-He213
005 20161114081506.0
007 cr nn 008mamaa
008 161114s2016 gw | s |||| 0|eng d
020 |a 9783319459554  |9 978-3-319-45955-4 
024 7 |a 10.1007/978-3-319-45955-4  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Wright, Steve.  |e author. 
245 1 0 |a Quadratic Residues and Non-Residues  |h [electronic resource] :  |b Selected Topics /  |c by Steve Wright. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIII, 292 p. 20 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2171 
505 0 |a Chapter 1. Introduction: Solving the General Quadratic Congruence Modulo a Prime -- Chapter 2. Basic Facts -- Chapter 3. Gauss' Theorema Aureum: the Law of Quadratic Reciprocity -- Chapter 4. Four Interesting Applications of Quadratic Reciprocity -- Chapter 5. The Zeta Function of an Algebraic Number Field and Some Applications -- Chapter 6. Elementary Proofs -- Chapter 7. Dirichlet L-functions and the Distribution of Quadratic Residues -- Chapter 8. Dirichlet's Class-Number Formula -- Chapter 9. Quadratic Residues and Non-residues in Arithmetic Progression -- Chapter 10. Are quadratic residues randomly distributed? -- Bibliography. 
520 |a This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory. 
650 0 |a Mathematics. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Fourier analysis. 
650 0 |a Convex geometry. 
650 0 |a Discrete geometry. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Convex and Discrete Geometry. 
650 2 4 |a Fourier Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319459547 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2171 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-45955-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)