Quadratic Residues and Non-Residues Selected Topics /
This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapt...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Σειρά: | Lecture Notes in Mathematics,
2171 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Chapter 1. Introduction: Solving the General Quadratic Congruence Modulo a Prime
- Chapter 2. Basic Facts
- Chapter 3. Gauss' Theorema Aureum: the Law of Quadratic Reciprocity
- Chapter 4. Four Interesting Applications of Quadratic Reciprocity
- Chapter 5. The Zeta Function of an Algebraic Number Field and Some Applications
- Chapter 6. Elementary Proofs
- Chapter 7. Dirichlet L-functions and the Distribution of Quadratic Residues
- Chapter 8. Dirichlet's Class-Number Formula
- Chapter 9. Quadratic Residues and Non-residues in Arithmetic Progression
- Chapter 10. Are quadratic residues randomly distributed?
- Bibliography.