Quadratic Residues and Non-Residues Selected Topics /

This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapt...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wright, Steve (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Lecture Notes in Mathematics, 2171
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Chapter 1. Introduction: Solving the General Quadratic Congruence Modulo a Prime
  • Chapter 2. Basic Facts
  • Chapter 3. Gauss' Theorema Aureum: the Law of Quadratic Reciprocity
  • Chapter 4. Four Interesting Applications of Quadratic Reciprocity
  • Chapter 5. The Zeta Function of an Algebraic Number Field and Some Applications
  • Chapter 6. Elementary Proofs
  • Chapter 7. Dirichlet L-functions and the Distribution of Quadratic Residues
  • Chapter 8. Dirichlet's Class-Number Formula
  • Chapter 9. Quadratic Residues and Non-residues in Arithmetic Progression
  • Chapter 10. Are quadratic residues randomly distributed?
  • Bibliography.