Lectures on Matrix Field Theory

These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries.  The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the co...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ydri, Badis (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Lecture Notes in Physics, 929
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03134nam a22005535i 4500
001 978-3-319-46003-1
003 DE-He213
005 20171101141524.0
007 cr nn 008mamaa
008 161124s2017 gw | s |||| 0|eng d
020 |a 9783319460031  |9 978-3-319-46003-1 
024 7 |a 10.1007/978-3-319-46003-1  |2 doi 
040 |d GrThAP 
050 4 |a QC174.45-174.52 
072 7 |a PHS  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
082 0 4 |a 530.14  |2 23 
100 1 |a Ydri, Badis.  |e author. 
245 1 0 |a Lectures on Matrix Field Theory  |h [electronic resource] /  |c by Badis Ydri. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XII, 352 p. 8 illus., 6 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 929 
505 0 |a Preface.- Introductory Remarks -- The Non-Commutative Moyal-Weyl Spaces Rd -- The Fuzzy Sphere -- Quantum Non-Commutative Phi-Four -- The Multitrace Approach.- Non-Commutative Gauge Theory -- Appendix A - The Landau States -- Appendix B - The Traces TrtAtB and TrtAtBtCtD -- Index. 
520 |a These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries.  The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries. 
650 0 |a Physics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Mathematical physics. 
650 0 |a Quantum field theory. 
650 0 |a String theory. 
650 0 |a Quantum physics. 
650 1 4 |a Physics. 
650 2 4 |a Quantum Field Theories, String Theory. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Math Applications in Computer Science. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Quantum Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319460024 
830 0 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 929 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-46003-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (Springer-11651)