An Introduction to Data Analysis using Aggregation Functions in R

This textbook helps future data analysts comprehend aggregation function theory and methods in an accessible way, focusing on a fundamental understanding of the data and summarization tools. Offering a broad overview of recent trends in aggregation research, it complements any study in statistical o...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: James, Simon (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03348nam a22005055i 4500
001 978-3-319-46762-7
003 DE-He213
005 20161107123654.0
007 cr nn 008mamaa
008 161107s2016 gw | s |||| 0|eng d
020 |a 9783319467627  |9 978-3-319-46762-7 
024 7 |a 10.1007/978-3-319-46762-7  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UMA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a COM018000  |2 bisacsh 
082 0 4 |a 006  |2 23 
100 1 |a James, Simon.  |e author. 
245 1 3 |a An Introduction to Data Analysis using Aggregation Functions in R  |h [electronic resource] /  |c by Simon James. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 199 p. 29 illus., 20 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Aggregating data with averaging functions -- Transforming data -- Weighted averaging -- Averaging with interaction -- Fitting aggregation functions to empirical data -- Solutions. 
520 |a This textbook helps future data analysts comprehend aggregation function theory and methods in an accessible way, focusing on a fundamental understanding of the data and summarization tools. Offering a broad overview of recent trends in aggregation research, it complements any study in statistical or machine learning techniques. Readers will learn how to program key functions in R without obtaining an extensive programming background. Sections of the textbook cover background information and context, aggregating data with averaging functions, power means, and weighted averages including the Borda count. It explains how to transform data using normalization or scaling and standardization, as well as log, polynomial, and rank transforms. The section on averaging with interaction introduces OWS functions and the Choquet integral, simple functions that allow the handling of non-independent inputs. The final chapters examine software analysis with an emphasis on parameter identification rather than technical aspects. This textbook is designed for students studying computer science or business who are interested in tools for summarizing and interpreting data, without requiring a strong mathematical background. It is also suitable for those working on sophisticated data science techniques who seek a better conception of fundamental data aggregation. Solutions to the practice questions are included in the textbook. 
650 0 |a Computer science. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computers. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Statistics. 
650 1 4 |a Computer Science. 
650 2 4 |a Computing Methodologies. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Mathematics of Computing. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319467610 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-46762-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)