Brauer Groups and Obstruction Problems Moduli Spaces and Arithmetic /

The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the b...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Auel, Asher (Επιμελητής έκδοσης), Hassett, Brendan (Επιμελητής έκδοσης), Várilly-Alvarado, Anthony (Επιμελητής έκδοσης), Viray, Bianca (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2017.
Σειρά:Progress in Mathematics, 320
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03658nam a22004935i 4500
001 978-3-319-46852-5
003 DE-He213
005 20170303065519.0
007 cr nn 008mamaa
008 170303s2017 gw | s |||| 0|eng d
020 |a 9783319468525  |9 978-3-319-46852-5 
024 7 |a 10.1007/978-3-319-46852-5  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
245 1 0 |a Brauer Groups and Obstruction Problems  |h [electronic resource] :  |b Moduli Spaces and Arithmetic /  |c edited by Asher Auel, Brendan Hassett, Anthony Várilly-Alvarado, Bianca Viray. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2017. 
300 |a IX, 247 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 0743-1643 ;  |v 320 
505 0 |a The Brauer group is not a derived invariant -- Twisted derived equivalences for affine schemes -- Rational points on twisted K3 surfaces and derived equivalences -- Universal unramified cohomology of cubic fourfolds containing a plane -- Universal spaces for unramified Galois cohomology -- Rational points on K3 surfaces and derived equivalence -- Unramified Brauer classes on cyclic covers of the projective plane -- Arithmetically Cohen-Macaulay bundles on cubic fourfolds containing a plane -- Brauer groups on K3 surfaces and arithmetic applications -- On a local-global principle for H3 of function fields of surfaces over a finite field -- Cohomology and the Brauer group of double covers. 
520 |a The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory. Contributors: · Nicolas Addington · Benjamin Antieau · Kenneth Ascher · Asher Auel · Fedor Bogomolov · Jean-Louis Colliot-Thélène · Krishna Dasaratha · Brendan Hassett · Colin Ingalls · Martí Lahoz · Emanuele Macrì · Kelly McKinnie · Andrew Obus · Ekin Ozman · Raman Parimala · Alexander Perry · Alena Pirutka · Justin Sawon · Alexei N. Skorobogatov · Paolo Stellari · Sho Tanimoto · Hugh Thomas · Yuri Tschinkel · Anthony Várilly-Alvarado · Bianca Viray · Rong Zhou. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Number Theory. 
700 1 |a Auel, Asher.  |e editor. 
700 1 |a Hassett, Brendan.  |e editor. 
700 1 |a Várilly-Alvarado, Anthony.  |e editor. 
700 1 |a Viray, Bianca.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319468518 
830 0 |a Progress in Mathematics,  |x 0743-1643 ;  |v 320 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-46852-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)