Generalized Lorenz-Mie Theories

This book explores generalized Lorenz–Mie theories when the illuminating beam is an electromagnetic arbitrary shaped beam relying on the method of separation of variables. The new edition includes an additional chapter covering the latest advances in both research and applications, which are highly...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gouesbet, Gérard (Συγγραφέας), Gréhan, Gérard (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Έκδοση:2nd ed. 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03079nam a22005415i 4500
001 978-3-319-46873-0
003 DE-He213
005 20170223082310.0
007 cr nn 008mamaa
008 170223s2017 gw | s |||| 0|eng d
020 |a 9783319468730  |9 978-3-319-46873-0 
024 7 |a 10.1007/978-3-319-46873-0  |2 doi 
040 |d GrThAP 
050 4 |a TA357-359 
072 7 |a TGMF  |2 bicssc 
072 7 |a TGMF1  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a SCI085000  |2 bisacsh 
082 0 4 |a 620.1064  |2 23 
100 1 |a Gouesbet, Gérard.  |e author. 
245 1 0 |a Generalized Lorenz-Mie Theories  |h [electronic resource] /  |c by Gérard Gouesbet, Gérard Gréhan. 
250 |a 2nd ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XXXVII, 331 p. 25 illus., 16 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Background in Maxwell’s Electromagnetism and Maxwell’s Equations -- Resolution of Special Maxwell‘s Equations -- Generalized Lorenz-Mie Theories in the Strict Sense, and other GLMTs -- Gaussian Beams, and Other Beams -- Finite Series -- Special Cases of Axisymmetric and Gaussian Beams -- The Localized Approximation and Localized Beam Models -- Applications, and Miscellaneous Issues -- Conclusion. 
520 |a This book explores generalized Lorenz–Mie theories when the illuminating beam is an electromagnetic arbitrary shaped beam relying on the method of separation of variables. The new edition includes an additional chapter covering the latest advances in both research and applications, which are highly relevant for readers. Although it particularly focuses on the homogeneous sphere, the book also considers other regular particles. It discusses in detail the methods available for evaluating beam shape coefficients describing the illuminating beam. In addition it features applications used in many fields such as optical particle sizing and, more generally, optical particle characterization, morphology-dependent resonances and the mechanical effects of light for optical trapping, optical tweezers and optical stretchers. Furthermore, it provides various computer programs relevant to the content. 
650 0 |a Engineering. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Fluid mechanics. 
650 0 |a Microwaves. 
650 0 |a Optical engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Engineering Fluid Dynamics. 
650 2 4 |a Classical Electrodynamics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Microwaves, RF and Optical Engineering. 
700 1 |a Gréhan, Gérard.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319468723 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-46873-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)