Deep Learning and Data Labeling for Medical Applications First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings /

This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label S...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Carneiro, Gustavo (Επιμελητής έκδοσης), Mateus, Diana (Επιμελητής έκδοσης), Peter, Loïc (Επιμελητής έκδοσης), Bradley, Andrew (Επιμελητής έκδοσης), Tavares, João Manuel R. S. (Επιμελητής έκδοσης), Belagiannis, Vasileios (Επιμελητής έκδοσης), Papa, João Paulo (Επιμελητής έκδοσης), Nascimento, Jacinto C. (Επιμελητής έκδοσης), Loog, Marco (Επιμελητής έκδοσης), Lu, Zhi (Επιμελητής έκδοσης), Cardoso, Jaime S. (Επιμελητής έκδοσης), Cornebise, Julien (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Lecture Notes in Computer Science, 10008
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04534nam a22007215i 4500
001 978-3-319-46976-8
003 DE-He213
005 20160926061853.0
007 cr nn 008mamaa
008 160926s2016 gw | s |||| 0|eng d
020 |a 9783319469768  |9 978-3-319-46976-8 
024 7 |a 10.1007/978-3-319-46976-8  |2 doi 
040 |d GrThAP 
050 4 |a TA1637-1638 
050 4 |a TA1634 
072 7 |a UYT  |2 bicssc 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Deep Learning and Data Labeling for Medical Applications  |h [electronic resource] :  |b First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings /  |c edited by Gustavo Carneiro, Diana Mateus, Loïc Peter, Andrew Bradley, João Manuel R. S. Tavares, Vasileios Belagiannis, João Paulo Papa, Jacinto C. Nascimento, Marco Loog, Zhi Lu, Jaime S. Cardoso, Julien Cornebise. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIII, 280 p. 115 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 10008 
505 0 |a Active learning -- Semi-supervised learning -- Reinforcement learning -- Domain adaptation and transfer learning -- Crowd-sourcing annotations and fusion of labels from different sources -- Data augmentation -- Modelling of label uncertainty -- Visualization and human-computer interaction -- Image description -- Medical imaging-based diagnosis -- Medical signal-based diagnosis -- Medical image reconstruction and model selection using deep learning techniques -- Meta-heuristic techniques for fine-tuning -- Parameter in deep learning-based architectures -- Applications based on deep learning techniques. 
520 |a This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty. The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques. 
650 0 |a Computer science. 
650 0 |a Health informatics. 
650 0 |a Artificial intelligence. 
650 0 |a Computer graphics. 
650 0 |a Image processing. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computer Graphics. 
650 2 4 |a Health Informatics. 
700 1 |a Carneiro, Gustavo.  |e editor. 
700 1 |a Mateus, Diana.  |e editor. 
700 1 |a Peter, Loïc.  |e editor. 
700 1 |a Bradley, Andrew.  |e editor. 
700 1 |a Tavares, João Manuel R. S.  |e editor. 
700 1 |a Belagiannis, Vasileios.  |e editor. 
700 1 |a Papa, João Paulo.  |e editor. 
700 1 |a Nascimento, Jacinto C.  |e editor. 
700 1 |a Loog, Marco.  |e editor. 
700 1 |a Lu, Zhi.  |e editor. 
700 1 |a Cardoso, Jaime S.  |e editor. 
700 1 |a Cornebise, Julien.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319469751 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 10008 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-46976-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)