Hybrid Soft Computing for Image Segmentation

This book proposes soft computing techniques for segmenting real-life images in applications such as image processing, image mining, video surveillance, and intelligent transportation systems. The book suggests hybrids deriving from three main approaches: fuzzy systems, primarily used for handling r...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bhattacharyya, Siddhartha (Επιμελητής έκδοσης), Dutta, Paramartha (Επιμελητής έκδοσης), De, Sourav (Επιμελητής έκδοσης), Klepac, Goran (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03102nam a22005175i 4500
001 978-3-319-47223-2
003 DE-He213
005 20161112170425.0
007 cr nn 008mamaa
008 161112s2016 gw | s |||| 0|eng d
020 |a 9783319472232  |9 978-3-319-47223-2 
024 7 |a 10.1007/978-3-319-47223-2  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Hybrid Soft Computing for Image Segmentation  |h [electronic resource] /  |c edited by Siddhartha Bhattacharyya, Paramartha Dutta, Sourav De, Goran Klepac. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVI, 321 p. 162 illus., 87 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Hybrid Soft Computing Techniques for Image Segmentation: Fundamentals and Applications -- Enhanced Rough-Fuzzy C-Means Algorithm for Image Segmentation -- Intuitionistic Fuzzy C-means Clustering Algorithm for Brain Image Segmentation -- Automatic Segmentation Approaches -- Modified Level Set Segmentation -- Fuzzy Deformable Models for 3D Segmentation of Brain Structures -- Rough Sets for Probabilistic Model Based Image Segmentation -- Segmentation of Cerebral Images. . 
520 |a This book proposes soft computing techniques for segmenting real-life images in applications such as image processing, image mining, video surveillance, and intelligent transportation systems. The book suggests hybrids deriving from three main approaches: fuzzy systems, primarily used for handling real-life problems that involve uncertainty; artificial neural networks, usually applied for machine cognition, learning, and recognition; and evolutionary computation, mainly used for search, exploration, efficient exploitation of contextual information, and optimization. The contributed chapters discuss both the strengths and the weaknesses of the approaches, and the book will be valuable for researchers and graduate students in the domains of image processing and computational intelligence. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Computer graphics. 
650 0 |a Computational intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
700 1 |a Bhattacharyya, Siddhartha.  |e editor. 
700 1 |a Dutta, Paramartha.  |e editor. 
700 1 |a De, Sourav.  |e editor. 
700 1 |a Klepac, Goran.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319472225 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-47223-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)