Hybrid Soft Computing for Multilevel Image and Data Segmentation

This book explains efficient solutions for segmenting the intensity levels of different types of multilevel images. The authors present hybrid soft computing techniques, which have advantages over conventional soft computing solutions as they incorporate data heterogeneity into the clustering/segmen...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: De, Sourav (Συγγραφέας), Bhattacharyya, Siddhartha (Συγγραφέας), Chakraborty, Susanta (Συγγραφέας), Dutta, Paramartha (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Computational Intelligence Methods and Applications,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03206nam a22005415i 4500
001 978-3-319-47524-0
003 DE-He213
005 20161111113623.0
007 cr nn 008mamaa
008 161111s2016 gw | s |||| 0|eng d
020 |a 9783319475240  |9 978-3-319-47524-0 
024 7 |a 10.1007/978-3-319-47524-0  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a De, Sourav.  |e author. 
245 1 0 |a Hybrid Soft Computing for Multilevel Image and Data Segmentation  |h [electronic resource] /  |c by Sourav De, Siddhartha Bhattacharyya, Susanta Chakraborty, Paramartha Dutta. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIV, 235 p. 99 illus., 39 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational Intelligence Methods and Applications,  |x 2510-1765 
505 0 |a Introduction -- Image Segmentation: A Review -- Self-supervised Gray Level Image Segmentation Using an Optimized MUSIG (OptiMUSIG) Activation Function -- Self-supervised Color Image Segmentation Using Parallel OptiMUSIG (ParaOptiMUSIG) Activation Function -- Self-supervised Gray Level Image Segmentation Using Multiobjective Based Optimized MUSIG (OptiMUSIG) Activation Function -- Self-supervised Color Image Segmentation Using Multiobjective Based Parallel Optimized MUSIG (ParaOptiMUSIG) Activation Function -- Unsupervised Genetic Algorithm Based Automatic Image Segmentation and Data Clustering Technique Validated by Fuzzy Intercluster Hostility Index. 
520 |a This book explains efficient solutions for segmenting the intensity levels of different types of multilevel images. The authors present hybrid soft computing techniques, which have advantages over conventional soft computing solutions as they incorporate data heterogeneity into the clustering/segmentation procedures. This is a useful introduction and reference for researchers and graduate students of computer science and electronics engineering, particularly in the domains of image processing and computational intelligence. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Computer graphics. 
650 0 |a Computational intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
700 1 |a Bhattacharyya, Siddhartha.  |e author. 
700 1 |a Chakraborty, Susanta.  |e author. 
700 1 |a Dutta, Paramartha.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319475233 
830 0 |a Computational Intelligence Methods and Applications,  |x 2510-1765 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-47524-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)