A Combinatorial Perspective on Quantum Field Theory
This book explores combinatorial problems and insights in quantum field theory. It is not comprehensive, but rather takes a tour, shaped by the author’s biases, through some of the important ways that a combinatorial perspective can be brought to bear on quantum field theory. Among the outcomes are...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2017.
|
Σειρά: | SpringerBriefs in Mathematical Physics,
15 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Part I Preliminaries
- Introduction
- Quantum field theory set up
- Combinatorial classes and rooted trees
- The Connes-Kreimer Hopf algebra
- Feynman graphs
- Part II Dyson-Schwinger equations
- Introduction to Dyson-Schwinger equations
- Sub-Hopf algebras from Dyson-Schwinger equations
- Tree factorial and leading log toys
- Chord diagram expansions
- Differential equations and the (next-to)m leading log expansion
- Part III Feynman periods
- Feynman integrals and Feynman periods
- Period preserving graph symmetries
- An invariant with these symmetries
- Weight
- The c2 invariant
- Combinatorial aspects of some integration algorithms
- Index.