Random Walks on Reductive Groups

The classical theory of random walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assum...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Benoist, Yves (Συγγραφέας), Quint, Jean-François (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, 62
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03624nam a22005415i 4500
001 978-3-319-47721-3
003 DE-He213
005 20170908021426.0
007 cr nn 008mamaa
008 161020s2016 gw | s |||| 0|eng d
020 |a 9783319477213  |9 978-3-319-47721-3 
024 7 |a 10.1007/978-3-319-47721-3  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Benoist, Yves.  |e author. 
245 1 0 |a Random Walks on Reductive Groups  |h [electronic resource] /  |c by Yves Benoist, Jean-François Quint. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XI, 323 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,  |x 0071-1136 ;  |v 62 
505 0 |a Introduction -- Part I The Law of Large Numbers -- Stationary measures -- The Law of Large Numbers -- Linear random walks -- Finite index subsemigroups -- Part II Reductive groups -- Loxodromic elements -- The Jordan projection of semigroups -- Reductive groups and their representations -- Zariski dense subsemigroups -- Random walks on reductive groups -- Part III The Central Limit Theorem -- Transfer operators over contracting actions -- Limit laws for cocycles -- Limit laws for products of random matrices -- Regularity of the stationary measure -- Part IV The Local Limit Theorem -- The Spectrum of the complex transfer operator -- The Local limit theorem for cocycles -- The local limit theorem for products of random matrices -- Part V Appendix -- Convergence of sequences of random variables -- The essential spectrum of bounded operators -- Bibliographical comments. 
520 |a The classical theory of random walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Topological Groups, Lie Groups. 
700 1 |a Quint, Jean-François.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319477190 
830 0 |a Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,  |x 0071-1136 ;  |v 62 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-47721-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)