New Advances on Chaotic Intermittency and its Applications

One of the most important routes to chaos is the chaotic intermittency. However, there are many cases that do not agree with the classical theoretical predictions. In this book, an extended theory for intermittency in one-dimensional maps is presented. A new general methodology to evaluate the reinj...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Elaskar, Sergio (Συγγραφέας), del Río, Ezequiel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04518nam a22005655i 4500
001 978-3-319-47837-1
003 DE-He213
005 20161215142453.0
007 cr nn 008mamaa
008 161215s2017 gw | s |||| 0|eng d
020 |a 9783319478371  |9 978-3-319-47837-1 
024 7 |a 10.1007/978-3-319-47837-1  |2 doi 
040 |d GrThAP 
050 4 |a TA349-359 
072 7 |a TGMD  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a SCI041000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 |a Elaskar, Sergio.  |e author. 
245 1 0 |a New Advances on Chaotic Intermittency and its Applications  |h [electronic resource] /  |c by Sergio Elaskar, Ezequiel del Río. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XVIII, 197 p. 99 illus., 62 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: Introduction to chaotic intermittency -- Chapter 2: Other types of intermittency and some recent advances in the study of chaotic intermittency -- Chapter 3: Some applications of the chaotic Intermittency -- Chapter 4: Classical theory about noise effects in chaotic intermittency -- Chapter 5: New formulation of the chaotic intermittency -- Chapter 6: New formulation of the noise effects in chaotic intermittency -- Chapter 7: Application of the new formulation to pathological cases -- Chapter 8: Application to dynamical systems. An example with discontinuous RPD: the derivative nonlinear Schrodinger equation -- Chapter 9: Evaluation of the intermittency statistical properties using the Perron-Frobenius operator. 
520 |a One of the most important routes to chaos is the chaotic intermittency. However, there are many cases that do not agree with the classical theoretical predictions. In this book, an extended theory for intermittency in one-dimensional maps is presented. A new general methodology to evaluate the reinjection probability density function (RPD) is developed in Chapters 5 to 8. The key of this formulation is the introduction of a new function, called M(x), which is used to calculate the RPD function. The function M(x) depends on two integrals. This characteristic reduces the influence on the statistical fluctuations in the data series. Also, the function M(x) is easy to evaluate from the data series, even for a small number of numerical or experimental data. As a result, a more general form for the RPD is found; where the classical theory based on uniform reinjection is recovered as a particular case. The characteristic exponent traditionally used to characterize the intermittency type, is now a function depending on the whole map, not just on the local map. Also, a new analytical approach to obtain the RPD from the mathematical expression of the map is presented. In this way all cases of non standard intermittencies are included in the same frame work. This methodology is extended to evaluate the noisy reinjection probability density function (NRPD), the noisy probability of the laminar length and the noisy characteristic relation. This is an important difference with respect to the classical approach based on the Fokker-Plank equation or Renormalization Group theory, where the noise effect was usually considered just on the local Poincaré map. Finally, in Chapter 9, a new scheme to evaluate the RPD function using the Perron-Frobenius operator is developed. Along the book examples of applications are described, which have shown very good agreement with numerical computations. . 
650 0 |a Engineering. 
650 0 |a Neurosciences. 
650 0 |a Mathematical physics. 
650 0 |a Fluids. 
650 0 |a Complexity, Computational. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Electrical engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Theoretical and Applied Mechanics. 
650 2 4 |a Fluid- and Aerodynamics. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Complexity. 
650 2 4 |a Electrical Engineering. 
650 2 4 |a Neurosciences. 
700 1 |a del Río, Ezequiel.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319478364 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-47837-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)