A Basic Course in Probability Theory

This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bhattacharya, Rabi (Συγγραφέας), Waymire, Edward C. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Έκδοση:2nd ed. 2016.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04455nam a22005055i 4500
001 978-3-319-47974-3
003 DE-He213
005 20170214093901.0
007 cr nn 008mamaa
008 170214s2016 gw | s |||| 0|eng d
020 |a 9783319479743  |9 978-3-319-47974-3 
024 7 |a 10.1007/978-3-319-47974-3  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Bhattacharya, Rabi.  |e author. 
245 1 2 |a A Basic Course in Probability Theory  |h [electronic resource] /  |c by Rabi Bhattacharya, Edward C. Waymire. 
250 |a 2nd ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XII, 265 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Preface to Second Edition -- Preface to First Edition -- I. Random Maps, Distribution, and Mathematical Expectation -- II. Independence, Conditional Expectation -- III. Martingales and Stopping Times -- IV. Classical Central Limit Theorems -- V. Classical Zero-One Laws, Laws of Large Numbers and Large Deviations -- VI. Fourier Series, Fourier Transform, and Characteristic Functions -- VII. Weak Convergence of Probability Measures on Metric Spaces -- VIII. Random Series of Independent Summands -- IX. Kolmogorov's Extension Theorem and Brownian Motion -- X. Brownian Motion: The LIL and Some Fine-Scale Properties -- XI. Strong Markov Property, Skorokhod Embedding and Donsker's Invariance Principle -- XII. A Historical Note on Brownian Motion -- XIII. Some Elements of the Theory of Markov Processes and their Convergence to Equilibrium -- A. Measure and Integration -- B. Topology and Function Spaces -- C. Hilbert Spaces and Applications in Measure Theory -- References -- Symbol Index -- Subject Index. 
520 |a This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded. General Markov dependent sequences and their convergence to equilibrium is the subject of an entirely new chapter. The introduction of conditional expectation and conditional probability very early in the text maintains the pedagogic innovation of the first edition; conditional expectation is illustrated in detail in the context of an expanded treatment of martingales, the Markov property, and the strong Markov property. Weak convergence of probabilities on metric spaces and Brownian motion are two topics to highlight. A selection of large deviation and/or concentration inequalities ranging from those of Chebyshev, Cramer–Chernoff, Bahadur–Rao, to Hoeffding have been added, with illustrative comparisons of their use in practice. This also includes a treatment of the Berry–Esseen error estimate in the central limit theorem. The authors assume mathematical maturity at a graduate level; otherwise the book is suitable for students with varying levels of background in analysis and measure theory. For the reader who needs refreshers, theorems from analysis and measure theory used in the main text are provided in comprehensive appendices, along with their proofs, for ease of reference. Rabi Bhattacharya is Professor of Mathematics at the University of Arizona. Edward Waymire is Professor of Mathematics at Oregon State University. Both authors have co-authored numerous books, including a series of four upcoming graduate textbooks in stochastic processes with applications. 
650 0 |a Mathematics. 
650 0 |a Measure theory. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Measure and Integration. 
700 1 |a Waymire, Edward C.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319479729 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-47974-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)