Convolution Copula Econometrics

This book presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumpt...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cherubini, Umberto (Συγγραφέας), Gobbi, Fabio (Συγγραφέας), Mulinacci, Sabrina (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:SpringerBriefs in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03088nam a22005535i 4500
001 978-3-319-48015-2
003 DE-He213
005 20161201090704.0
007 cr nn 008mamaa
008 161201s2016 gw | s |||| 0|eng d
020 |a 9783319480152  |9 978-3-319-48015-2 
024 7 |a 10.1007/978-3-319-48015-2  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a K  |2 bicssc 
072 7 |a BUS061000  |2 bisacsh 
082 0 4 |a 330.015195  |2 23 
100 1 |a Cherubini, Umberto.  |e author. 
245 1 0 |a Convolution Copula Econometrics  |h [electronic resource] /  |c by Umberto Cherubini, Fabio Gobbi, Sabrina Mulinacci. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 90 p. 31 illus., 30 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Statistics,  |x 2191-544X 
505 0 |a Preface -- The Dynamics of Economic Variables -- Estimation of Copula Models -- Copulas and Estimation of Markov Processes -- Copula-based Markov Processes: Estimation, Mixing Properties and Long-term Behavior -- Convolution-based Processes -- Application to Interest Rates. . 
520 |a This book presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumption of classical time series models. The book offers a solution to the problem of a general semiparametric approach, which is given by a concept called C-convolution (convolution of dependent variables), and the corresponding theory of convolution-based copulas. Intended for econometrics and statistics scholars with a special interest in time series analysis and copula functions (or other nonparametric approaches), the book is also useful for doctoral students with a basic knowledge of copula functions wanting to learn about the latest research developments in the field. 
650 0 |a Statistics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Probabilities. 
650 0 |a Econometrics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Econometrics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Gobbi, Fabio.  |e author. 
700 1 |a Mulinacci, Sabrina.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319480145 
830 0 |a SpringerBriefs in Statistics,  |x 2191-544X 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-48015-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)