Numerical Simulation in Applied Geophysics

This book presents the theory of waves propagation in a fluid-saturated porous medium (a Biot medium) and its application in Applied Geophysics. In particular, a derivation of absorbing boundary conditions in viscoelastic and poroelastic media is presented, which later is employed in the application...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Santos, Juan Enrique (Συγγραφέας), Gauzellino, Patricia Mercedes (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Σειρά:Lecture Notes in Geosystems Mathematics and Computing
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04327nam a22005535i 4500
001 978-3-319-48457-0
003 DE-He213
005 20180102142629.0
007 cr nn 008mamaa
008 170113s2016 gw | s |||| 0|eng d
020 |a 9783319484570  |9 978-3-319-48457-0 
024 7 |a 10.1007/978-3-319-48457-0  |2 doi 
040 |d GrThAP 
050 4 |a TA342-343 
072 7 |a PBWH  |2 bicssc 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a TEC009060  |2 bisacsh 
082 0 4 |a 003.3  |2 23 
100 1 |a Santos, Juan Enrique.  |e author. 
245 1 0 |a Numerical Simulation in Applied Geophysics  |h [electronic resource] /  |c by Juan Enrique Santos, Patricia Mercedes Gauzellino. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XV, 309 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Geosystems Mathematics and Computing 
505 0 |a 1.Waves in porous media.- 2.Extensions of Biot Theory.- 3.Absorbing Boundary Conditions in Viscoelastic and.- 4.Induced Anisotropy, Viscoelastic and Poroelastic -- 5.Wave Propagation in Poroelastic Media. The Finite.- 6.The Mesoscale and the Macroscale. Isotropic Case.- 7.The Mesoscale and the Macroscale. VTI Case.- 8.Wave Propagation at the Macroscale --  . 
520 |a This book presents the theory of waves propagation in a fluid-saturated porous medium (a Biot medium) and its application in Applied Geophysics. In particular, a derivation of absorbing boundary conditions in viscoelastic and poroelastic media is presented, which later is employed in the applications. The partial differential equations describing the propagation of waves in Biot media are solved using the Finite Element Method (FEM). Waves propagating in a Biot medium suffer attenuation and dispersion effects. In particular the fast compressional and shear waves are converted to slow diffusion-type waves at mesoscopic-scale heterogeneities (on the order of centimeters), effect usually occurring in the seismic range of frequencies. In some cases, a Biot medium presents a dense set of fractures oriented in preference directions. When the average distance between fractures is much smaller than the wavelengths of the travelling fast compressional and shear waves, the medium behaves as an effective viscoelastic and anisotropic medium at the macroscale. The book presents a procedure determine the coefficients of the effective medium employing a collection of time-harmonic compressibility and shear experiments, in the context of Numerical Rock Physics. Each experiment is associated with a boundary value problem, that is solved using the FEM. This approach offers an alternative to laboratory observations with the advantages that they are inexpensive, repeatable and essentially free from experimental errors. The different topics are followed by illustrative examples of application in Geophysical Exploration. In particular, the effects caused by mesoscopic-scale heterogeneities or the presence of aligned fractures are taking into account in the seismic wave propagation models at the macroscale. The numerical simulations of wave propagation are presented with sufficient detail as to be easily implemented assuming the knowledge of scientific programming techniques. 
650 0 |a Mathematics. 
650 0 |a Geophysics. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical physics. 
650 0 |a Mathematical models. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Geophysics/Geodesy. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Geophysics and Environmental Physics. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
700 1 |a Gauzellino, Patricia Mercedes.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319484563 
830 0 |a Lecture Notes in Geosystems Mathematics and Computing 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-48457-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)