Analysis of Quantised Vortex Tangle

In this thesis, the author develops numerical techniques for tracking and characterising the convoluted nodal lines in three-dimensional space, analysing their geometry on the small scale, as well as their global fractality and topological complexity---including knotting---on the large scale. The wo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Taylor, Alexander John (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02759nam a22004935i 4500
001 978-3-319-48556-0
003 DE-He213
005 20161124213504.0
007 cr nn 008mamaa
008 161124s2017 gw | s |||| 0|eng d
020 |a 9783319485560  |9 978-3-319-48556-0 
024 7 |a 10.1007/978-3-319-48556-0  |2 doi 
040 |d GrThAP 
050 4 |a QC1-999 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.1  |2 23 
100 1 |a Taylor, Alexander John.  |e author. 
245 1 0 |a Analysis of Quantised Vortex Tangle  |h [electronic resource] /  |c by Alexander John Taylor. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XVI, 197 p. 95 illus., 84 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Introduction -- Numerical Methods -- Geometry and Scaling of Vortex Lines -- Topological Methods -- Knotting and Linking of Vortex Lines -- Conclusions. . 
520 |a In this thesis, the author develops numerical techniques for tracking and characterising the convoluted nodal lines in three-dimensional space, analysing their geometry on the small scale, as well as their global fractality and topological complexity---including knotting---on the large scale. The work is highly visual, and illustrated with many beautiful diagrams revealing this unanticipated aspect of the physics of waves. Linear superpositions of waves create interference patterns, which means in some places they strengthen one another, while in others they completely cancel each other out. This latter phenomenon occurs on 'vortex lines' in three dimensions. In general wave superpositions modelling e.g. chaotic cavity modes, these vortex lines form dense tangles that have never been visualised on the large scale before, and cannot be analysed mathematically by any known techniques. . 
650 0 |a Physics. 
650 0 |a Topology. 
650 0 |a Mathematical physics. 
650 0 |a Statistics. 
650 1 4 |a Physics. 
650 2 4 |a Numerical and Computational Physics, Simulation. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Topology. 
650 2 4 |a Statistical Theory and Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319485553 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-48556-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)