Introduction to Partial Differential Equations

This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Borthwick, David (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02904nam a22004575i 4500
001 978-3-319-48936-0
003 DE-He213
005 20180305161702.0
007 cr nn 008mamaa
008 170112s2016 gw | s |||| 0|eng d
020 |a 9783319489360  |9 978-3-319-48936-0 
024 7 |a 10.1007/978-3-319-48936-0  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Borthwick, David.  |e author. 
245 1 0 |a Introduction to Partial Differential Equations  |h [electronic resource] /  |c by David Borthwick. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVI, 283 p. 68 illus., 61 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a 1. Introduction -- 2. Preliminaries -- 3. Conservation Equations and Characteristics -- 4. The Wave Equation -- 5. Separation of Variables -- 6. The Heat Equation -- 7. Function Spaces -- 8. Fourier Series -- 9. Maximum Principles -- 10. Weak Solutions -- 11. Variational Methods -- 12. Distributions -- 13. The Fourier Transform -- A. Appendix: Analysis Foundations -- References -- Notation Guide -- Index. 
520 |a This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise.Within each section the author creates a narrative that answers the five questions: (1) What is the scientific problem we are trying to understand? (2) How do we model that with PDE? (3) What techniques can we use to analyze the PDE? (4) How do those techniques apply to this equation? (5) What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319489346 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-48936-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)