Waves in Continuous Media

Starting with the basic notions and facts of the mathematical theory of waves illustrated by numerous examples, exercises, and methods of solving typical problems Chapters 1 & 2 show e.g. how to recognize the hyperbolicity property, find characteristics, Riemann invariants and conservation laws...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gavrilyuk, S. L. (Συγγραφέας), Makarenko, N.I (Συγγραφέας), Sukhinin, S.V (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Lecture Notes in Geosystems Mathematics and Computing
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02630nam a22004575i 4500
001 978-3-319-49277-3
003 DE-He213
005 20170202111641.0
007 cr nn 008mamaa
008 170202s2017 gw | s |||| 0|eng d
020 |a 9783319492773  |9 978-3-319-49277-3 
024 7 |a 10.1007/978-3-319-49277-3  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Gavrilyuk, S. L.  |e author. 
245 1 0 |a Waves in Continuous Media  |h [electronic resource] /  |c by S. L. Gavrilyuk, N.I. Makarenko, S.V. Sukhinin. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a VIII, 141 p. 15 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Geosystems Mathematics and Computing 
505 0 |a 1. Hyperbolic waves -- 2. Dispersive waves -- 3. Water waves. 
520 |a Starting with the basic notions and facts of the mathematical theory of waves illustrated by numerous examples, exercises, and methods of solving typical problems Chapters 1 & 2 show e.g. how to recognize the hyperbolicity property, find characteristics, Riemann invariants and conservation laws for quasilinear systems of equations, construct and analyze solutions with weak or strong discontinuities, and how to investigate equations with dispersion and to construct travelling wave solutions for models reducible to nonlinear evolution equations. Chapter 3 deals with surface and internal waves in an incompressible fluid. The efficiency of mathematical methods is demonstrated on a hierarchy of approximate submodels generated from the Euler equations of homogeneous and non-homogeneous fluids. The self-contained presentations of the material is complemented by 200+ problems of different level of difficulty, numerous illustrations, and bibliographical recommendations. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
700 1 |a Makarenko, N.I.  |e author. 
700 1 |a Sukhinin, S.V.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319492766 
830 0 |a Lecture Notes in Geosystems Mathematics and Computing 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-49277-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)