Numerical Models for Differential Problems
In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation l...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2017.
|
Έκδοση: | 3rd ed. 2017. |
Σειρά: | MS&A, Modeling, Simulation and Applications,
16 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1 A brief survey of partial differential equations
- 2 Elements of functional analysis
- 3 Elliptic equations
- 4 The Galerkin finite element method for elliptic problems
- 5 Parabolic equations
- 6 Generation of 1D and 2D grids
- 7 Algorithms for the solution of linear systems
- 8 Elements of finite element programming
- 9 The finite volume method
- 10 Spectral methods
- 11 Isogeometric analysis
- 12 Discontinuous element methods (D Gandmortar)
- 13 Diffusion-transport-reaction equations
- 14 Finite differences for hyperbolic equations
- 15 Finite elements and spectral methods for hyperbolic equations
- 16 Nonlinear hyperbolic problems
- 17 Navier-Stokes equations
- 18 Optimal control of partial differential equations
- 19 Domain decomposition methods
- 20 Reduced basis approximation for parametrized partial differential equations
- References.