Monoidal Categories and Topological Field Theory

This monograph is devoted to monoidal categories and their connections with 3-dimensional topological field theories. Starting with basic definitions, it proceeds to the forefront of current research. Part 1 introduces monoidal categories and several of their classes, including rigid, pivotal, spher...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Turaev, Vladimir (Συγγραφέας), Virelizier, Alexis (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2017.
Σειρά:Progress in Mathematics, 322
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03167nam a22005055i 4500
001 978-3-319-49834-8
003 DE-He213
005 20170628155508.0
007 cr nn 008mamaa
008 170628s2017 gw | s |||| 0|eng d
020 |a 9783319498348  |9 978-3-319-49834-8 
024 7 |a 10.1007/978-3-319-49834-8  |2 doi 
040 |d GrThAP 
050 4 |a QA169 
072 7 |a PBC  |2 bicssc 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.6  |2 23 
100 1 |a Turaev, Vladimir.  |e author. 
245 1 0 |a Monoidal Categories and Topological Field Theory  |h [electronic resource] /  |c by Vladimir Turaev, Alexis Virelizier. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2017. 
300 |a XII, 523 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 0743-1643 ;  |v 322 
505 0 |a Introduction -- Part I: Monoidal Categories -- Part 2: Hopf Algebras and Monads -- Part 3: State Sum Topological Field Theory -- Part 4: Graph Topological Field Theory -- Appendices -- Bibliography -- Index. 
520 |a This monograph is devoted to monoidal categories and their connections with 3-dimensional topological field theories. Starting with basic definitions, it proceeds to the forefront of current research. Part 1 introduces monoidal categories and several of their classes, including rigid, pivotal, spherical, fusion, braided, and modular categories. It then presents deep theorems of Müger on the center of a pivotal fusion category. These theorems are proved in Part 2 using the theory of Hopf monads. In Part 3 the authors define the notion of a topological quantum field theory (TQFT) and construct a Turaev-Viro-type 3-dimensional state sum TQFT from a spherical fusion category. Lastly, in Part 4 this construction is extended to 3-manifolds with colored ribbon graphs, yielding a so-called graph TQFT (and, consequently, a 3-2-1 extended TQFT). The authors then prove the main result of the monograph: the state sum graph TQFT derived from any spherical fusion category is isomorphic to the Reshetikhin-Turaev surgery graph TQFT derived from the center of that category. The book is of interest to researchers and students studying topological field theory, monoidal categories, Hopf algebras and Hopf monads. 
650 0 |a Mathematics. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Category Theory, Homological Algebra. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
700 1 |a Virelizier, Alexis.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319498331 
830 0 |a Progress in Mathematics,  |x 0743-1643 ;  |v 322 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-49834-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)