Directed Polymers in Random Environments École d'Été de Probabilités de Saint-Flour XLVI – 2016 /

Analyzing the phase transition from diffusive to localized behavior in a model of directed polymers in a random environment, this volume places particular emphasis on the localization phenomenon. The main question is: What does the path of a random walk look like if rewards and penalties are spatial...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Comets, Francis (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Lecture Notes in Mathematics, 2175
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03065nam a22004815i 4500
001 978-3-319-50487-2
003 DE-He213
005 20170131142107.0
007 cr nn 008mamaa
008 170131s2017 gw | s |||| 0|eng d
020 |a 9783319504872  |9 978-3-319-50487-2 
024 7 |a 10.1007/978-3-319-50487-2  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Comets, Francis.  |e author. 
245 1 0 |a Directed Polymers in Random Environments  |h [electronic resource] :  |b École d'Été de Probabilités de Saint-Flour XLVI – 2016 /  |c by Francis Comets. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XVI, 199 p. 20 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2175 
505 0 |a 1 Introduction -- 2 Thermodynamics and Phase Transition -- 3 The martingale approach and the L2 region -- 4 Lattice versus tree -- 5 Semimartingale approach and localization transition -- 6 Log-Gamma polymer model -- 7 Kardar-Parisi-Zhang equation and universality -- 8 Variational formulas. 
520 |a Analyzing the phase transition from diffusive to localized behavior in a model of directed polymers in a random environment, this volume places particular emphasis on the localization phenomenon. The main question is: What does the path of a random walk look like if rewards and penalties are spatially randomly distributed? This model, which provides a simplified version of stretched elastic chains pinned by random impurities, has attracted much research activity, but it (and its relatives) still holds many secrets, especially in high dimensions. It has non-gaussian scaling limits and it belongs to the so-called KPZ universality class when the space is one-dimensional. Adopting a Gibbsian approach, using general and powerful tools from probability theory, the discrete model is studied in full generality. Presenting the state-of-the art from different perspectives, and written in the form of a first course on the subject, this monograph is aimed at researchers in probability or statistical physics, but is also accessible to masters and Ph.D. students. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistical Physics and Dynamical Systems. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319504865 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2175 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-50487-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)