Robustness in Econometrics

This book presents recent research on robustness in econometrics. Robust data processing techniques – i.e., techniques that yield results minimally affected by outliers – and their applications to real-life economic and financial situations are the main focus of this book. The book also discusses ap...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kreinovich, Vladik (Επιμελητής έκδοσης), Sriboonchitta, Songsak (Επιμελητής έκδοσης), Huynh, Van-Nam (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Studies in Computational Intelligence, 692
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06408nam a22005055i 4500
001 978-3-319-50742-2
003 DE-He213
005 20170212182303.0
007 cr nn 008mamaa
008 170212s2017 gw | s |||| 0|eng d
020 |a 9783319507422  |9 978-3-319-50742-2 
024 7 |a 10.1007/978-3-319-50742-2  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Robustness in Econometrics  |h [electronic resource] /  |c edited by Vladik Kreinovich, Songsak Sriboonchitta, Van-Nam Huynh. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a X, 705 p. 129 illus., 120 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 692 
505 0 |a Part I Keynote Addresses: Robust Estimation of Heckman Model -- Part II Fundamental Theory: Sequential Monte Carlo Sampling for State Space Models -- Robustness as a Criterion for Selecting a Probability Distribution Under Uncertainty -- Why Cannot We Have a Strongly Consistent Family of Skew Normal (and Higher Order) Distributions -- Econometric Models of Probabilistic Choice: Beyond McFadden’s Formulas -- How to Explain Ubiquity of Constant Elasticity of Substitution (CES) Production and Utility Functions Without Explicitly Postulating CES -- How to Make Plausibility-Based Forecasting More Accurate -- Structural Breaks of CAPM-type Market Model with Heteroskedasticity and Quantile Regression -- Weighted Least Squares and Adaptive Least Squares: Further Empirical Evidence -- Prior-free probabilistic inference for econometricians -- Robustness in Forecasting Future Liabilities in Insurance -- On Conditioning in Multidimensional Probabilistic Models -- New Estimation Method for Mixture of Normal Distributions -- EM Estimation for Multivariate Skew Slash Distribution -- Constructions of multivariate copulas -- Plausibility regions on the skewness parameter of skew normal distributions based on inferential models -- International Yield Curve Prediction with Common Functional Principal Component Analysis -- An alternative to p-values in hypothesis testing with applications in model selection of stock price data -- Confidence Intervals for the Common Mean of Several Normal Populations -- A generalized information theoretical approach to Non-linear time series model -- Predictive recursion maximum likelihood of Threshold Autoregressive model -- A multivariate generalized FGM copulas and its application to multiple regression -- Part III Applications: Key Economic Sectors and Their Transitions: Analysis of World Input-Output Network -- Natural Resources, Financial Development and Sectoral Value Added in a Resource Based Economy -- Can bagging improve the forecasting performance of tourism demand models? -- The Role of Asian Credit Default Swap Index in Portfolio Risk Management -- Chinese outbound tourism demand to Singapore, Malaysia and Thailand destinations: A study of political events and holiday impacts -- Forecasting Asian Credit Default Swap spreads: A comparison of multi-regime models -- Forecasting Asian Credit Default Swap spreads: A comparison of multi-regime models -- Effect of Helmet Use on Severity of Head Injuries Using Doubly Robust Estimators -- Forecasting cash holding with cash deposit using time series approaches -- Forecasting GDP Growth in Thailand with Different Leading Indicators using MIDAS regression models -- Testing the Validity of Economic Growth Theories Using Copula-based Seemingly Unrelated Quantile Kink Regression -- Analysis of Global Competitiveness Using Copula-based Stochastic Frontier Kink Model -- Gravity model of trade with Linear Quantile Mixed Models approach -- Stochastic Frontier Model in Financial Econometrics: A Copula-based Approach -- Quantile Forecasting of PM10 Data in Korea based on Time Series Models -- Do We Have Robust GARCH Models under Different Mean Equations: Evidence from Exchange Rates of Thailand? -- Joint Determinants of Foreign Direct Investment (FDI) Inflow in Cambodia: A Panel Co-integration Approach -- The Visitors’ Attitudes and Perceived Value toward Rural Regeneration Community Development of Taiwan -- Analyzing the contribution of ASEAN stock markets to systemic risk -- Estimating Efficiency of Stock Return with Interval Data -- The impact of extreme events on portfolio in financial risk management -- Foreign Direct Investment, Exports and Economic Growth in ASEAN Region: Empirical Analysis from Panel Data -- Author Index. 
520 |a This book presents recent research on robustness in econometrics. Robust data processing techniques – i.e., techniques that yield results minimally affected by outliers – and their applications to real-life economic and financial situations are the main focus of this book. The book also discusses applications of more traditional statistical techniques to econometric problems. Econometrics is a branch of economics that uses mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. In day-by-day data, we often encounter outliers that do not reflect the long-term economic trends, e.g., unexpected and abrupt fluctuations. As such, it is important to develop robust data processing techniques that can accommodate these fluctuations. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 0 |a Econometrics. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Econometrics. 
700 1 |a Kreinovich, Vladik.  |e editor. 
700 1 |a Sriboonchitta, Songsak.  |e editor. 
700 1 |a Huynh, Van-Nam.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319507415 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 692 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-50742-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)