Selberg Zeta Functions and Transfer Operators An Experimental Approach to Singular Perturbations /

This book presents a method for evaluating Selberg zeta functions via transfer operators for the full modular group and its congruence subgroups with characters. Studying zeros of Selberg zeta functions for character deformations allows us to access the discrete spectra and resonances of hyperbolic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Fraczek, Markus Szymon (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Lecture Notes in Mathematics, 2139
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03047nam a22005655i 4500
001 978-3-319-51296-9
003 DE-He213
005 20170513132952.0
007 cr nn 008mamaa
008 170513s2017 gw | s |||| 0|eng d
020 |a 9783319512969  |9 978-3-319-51296-9 
024 7 |a 10.1007/978-3-319-51296-9  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Fraczek, Markus Szymon.  |e author. 
245 1 0 |a Selberg Zeta Functions and Transfer Operators  |h [electronic resource] :  |b An Experimental Approach to Singular Perturbations /  |c by Markus Szymon Fraczek. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XV, 354 p. 71 illus., 43 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2139 
520 |a This book presents a method for evaluating Selberg zeta functions via transfer operators for the full modular group and its congruence subgroups with characters. Studying zeros of Selberg zeta functions for character deformations allows us to access the discrete spectra and resonances of hyperbolic Laplacians under both singular and non-singular perturbations. Areas in which the theory has not yet been sufficiently developed, such as the spectral theory of transfer operators or the singular perturbation theory of hyperbolic Laplacians, will profit from the numerical experiments discussed in this book. Detailed descriptions of numerical approaches to the spectra and eigenfunctions of transfer operators and to computations of Selberg zeta functions will be of value to researchers active in analysis, while those researchers focusing more on numerical aspects will benefit from discussions of the analytic theory, in particular those concerning the transfer operator method and the spectral theory of hyperbolic spaces. 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Functions of complex variables. 
650 0 |a Special functions. 
650 0 |a Computer mathematics. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Special Functions. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319512945 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2139 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-51296-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)