From Social Data Mining and Analysis to Prediction and Community Detection

This book presents the state-of-the-art in various aspects of analysis and mining of online social networks. Within the broader context of online social networks, it focuses on important and upcoming topics of social network analysis and mining. The book collects chapters that are expanded versions...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kaya, Mehmet (Επιμελητής έκδοσης), Erdoǧan, Özcan (Επιμελητής έκδοσης), Rokne, Jon (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Lecture Notes in Social Networks,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03154nam a22005055i 4500
001 978-3-319-51367-6
003 DE-He213
005 20170321120910.0
007 cr nn 008mamaa
008 170321s2017 gw | s |||| 0|eng d
020 |a 9783319513676  |9 978-3-319-51367-6 
024 7 |a 10.1007/978-3-319-51367-6  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
245 1 0 |a From Social Data Mining and Analysis to Prediction and Community Detection  |h [electronic resource] /  |c edited by Mehmet Kaya, Özcan Erdoǧan, Jon Rokne. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a X, 245 p. 78 illus., 53 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Social Networks,  |x 2190-5428 
505 0 |a Chapter1. An Offline-Online Visual Framework for Clustering Memes in Social Media -- Chapter2. A System for Email Recipient Prediction -- Chapter3. A Credibility Assessment Model for Online Social Network Content -- Chapter4. Web Search Engine based Representation for Arabic Tweets Categorization -- Chapter5. Sentiment Trends and Classifying Stocks using P-Trees -- Chapter6. Mining Community Structure with Node Embeddings -- Chapter7. A LexDFS-based Approach on finding compact communities -- Chapter8. Computational Data Sciences and Regulation of Banking and Financial Services -- Chapter9. Frequent and Non-Frequent Sequential Itemsets Detection. 
520 |a This book presents the state-of-the-art in various aspects of analysis and mining of online social networks. Within the broader context of online social networks, it focuses on important and upcoming topics of social network analysis and mining. The book collects chapters that are expanded versions of the best papers presented at the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM’2015), which was held in Paris, France in August 2015. All papers have been peer reviewed and checked carefully for overlap with the literature. The book will appeal to students and researchers in social network analysis/mining and machine learning. 
650 0 |a Computer science. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Applications of Graph Theory and Complex Networks. 
700 1 |a Kaya, Mehmet.  |e editor. 
700 1 |a Erdoǧan, Özcan.  |e editor. 
700 1 |a Rokne, Jon.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319513669 
830 0 |a Lecture Notes in Social Networks,  |x 2190-5428 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-51367-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)