Foundations of Quantum Theory From Classical Concepts to Operator Algebras /
This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2017.
|
Σειρά: | Fundamental Theories of Physics,
188 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- Part I Co(X) and B(H): Classical physics on a finite phase space
- Quantum mechanics on a finite-dimensional Hilbert space
- Classical physics on a general phase space
- Quantum physics on a general Hilbert space
- Symmetry in quantum mechanics
- Part II Between Co(X) and B(H): Classical models of quantum mechanics
- Limits: Small hbar
- Limits: large N
- Symmetry in algebraic quantum theory
- Spontaneous Symmetry Breaking
- The Measurement Problem
- Topos theory and quantum logic
- Appendix A: Finite-dimensional Hilbert spaces
- Appendix B: Basic functional analysis
- Appendix C: Operator algebras
- Appendix D: Lattices and logic
- Appendix E: Category theory and topos theory
- References.