Combinatorics and Complexity of Partition Functions

Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnia...

Full description

Bibliographic Details
Main Author: Barvinok, Alexander (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2016.
Series:Algorithms and Combinatorics, 30
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03116nam a22005415i 4500
001 978-3-319-51829-9
003 DE-He213
005 20170314123921.0
007 cr nn 008mamaa
008 170314s2016 gw | s |||| 0|eng d
020 |a 9783319518299  |9 978-3-319-51829-9 
024 7 |a 10.1007/978-3-319-51829-9  |2 doi 
040 |d GrThAP 
050 4 |a QA9.58 
072 7 |a PBWH  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 511.352  |2 23 
100 1 |a Barvinok, Alexander.  |e author. 
245 1 0 |a Combinatorics and Complexity of Partition Functions  |h [electronic resource] /  |c by Alexander Barvinok. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a VI, 303 p. 51 illus., 42 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algorithms and Combinatorics,  |x 0937-5511 ;  |v 30 
505 0 |a Chapter I. Introduction -- Chapter II. Preliminaries -- Chapter III. Permanents -- Chapter IV. Hafnians and Multidimensional Permanents -- Chapter V. The Matching Polynomial -- Chapter VI. The Independence Polynomial -- Chapter VII. The Graph Homomorphism Partition Function -- Chapter VIII. Partition Functions of Integer Flows -- References -- Index. 
520 |a Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates. . 
650 0 |a Mathematics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Approximation theory. 
650 0 |a System theory. 
650 0 |a Algorithms. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics of Algorithmic Complexity. 
650 2 4 |a Combinatorics. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Complex Systems. 
650 2 4 |a Algorithms. 
650 2 4 |a Approximations and Expansions. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319518282 
830 0 |a Algorithms and Combinatorics,  |x 0937-5511 ;  |v 30 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-51829-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)