Predictability of Chaotic Dynamics A Finite-time Lyapunov Exponents Approach /

This book is primarily concerned with the computational aspects of predictability of dynamical systems – in particular those where observation, modeling and computation are strongly interdependent. Unlike with physical systems under control in laboratories, for instance in celestial mechanics, one i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Vallejo, Juan C. (Συγγραφέας), Sanjuan, Miguel A. F. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Springer Series in Synergetics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03692nam a22004935i 4500
001 978-3-319-51893-0
003 DE-He213
005 20170429141034.0
007 cr nn 008mamaa
008 170327s2017 gw | s |||| 0|eng d
020 |a 9783319518930  |9 978-3-319-51893-0 
024 7 |a 10.1007/978-3-319-51893-0  |2 doi 
040 |d GrThAP 
050 4 |a QC174.7-175.36 
072 7 |a PBWR  |2 bicssc 
072 7 |a PHDT  |2 bicssc 
072 7 |a SCI012000  |2 bisacsh 
082 0 4 |a 621  |2 23 
100 1 |a Vallejo, Juan C.  |e author. 
245 1 0 |a Predictability of Chaotic Dynamics  |h [electronic resource] :  |b A Finite-time Lyapunov Exponents Approach /  |c by Juan C. Vallejo, Miguel A. F. Sanjuan. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XV, 136 p. 47 illus., 22 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Synergetics,  |x 0172-7389 
505 0 |a Preface -- Forecasting and Chaos -- Lyapunov Exponents -- Dynamical Regimes and Timescales -- Predictability -- Numerical Calculation of Lyapunov Exponents. 
520 |a This book is primarily concerned with the computational aspects of predictability of dynamical systems – in particular those where observation, modeling and computation are strongly interdependent. Unlike with physical systems under control in laboratories, for instance in celestial mechanics, one is confronted with the observation and modeling of systems without the possibility of altering the key parameters of the objects studied. Therefore, the numerical simulations offer an essential tool for analyzing these systems. With the widespread use of computer simulations to solve complex dynamical systems, the reliability of the numerical calculations is of ever-increasing interest and importance. This reliability is directly related to the regularity and instability properties of the modeled flow. In this interdisciplinary scenario, the underlying physics provide the simulated models, nonlinear dynamics provides their chaoticity and instability properties, and the computer sciences provide the actual numerical implementation. This book introduces and explores precisely this link between the models and their predictability characterization based on concepts derived from the field of nonlinear dynamics, with a focus on the finite-time Lyapunov exponents approach. The method is illustrated using a number of well-known continuous dynamical systems, including the Contopoulos, Hénon-Heiles and Rössler systems. To help students and newcomers quickly learn to apply these techniques, the appendix provides descriptions of the algorithms used throughout the text and details how to implement them in order to solve a given continuous dynamical system. 
650 0 |a Physics. 
650 0 |a Mathematical physics. 
650 1 4 |a Physics. 
650 2 4 |a Applications of Nonlinear Dynamics and Chaos Theory. 
650 2 4 |a Numerical and Computational Physics, Simulation. 
650 2 4 |a Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics). 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
700 1 |a Sanjuan, Miguel A. F.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319518923 
830 0 |a Springer Series in Synergetics,  |x 0172-7389 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-51893-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)