Random Obstacle Problems École d'Été de Probabilités de Saint-Flour XLV - 2015 /

Studying the fine properties of solutions to Stochastic (Partial) Differential Equations with reflection at a boundary, this book begins with a discussion of classical one-dimensional diffusions as the reflecting Brownian motion, devoting a chapter to Bessel processes, and moves on to function-value...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Zambotti, Lorenzo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Lecture Notes in Mathematics, 2181
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02652nam a22004695i 4500
001 978-3-319-52096-4
003 DE-He213
005 20170227155649.0
007 cr nn 008mamaa
008 170227s2017 gw | s |||| 0|eng d
020 |a 9783319520964  |9 978-3-319-52096-4 
024 7 |a 10.1007/978-3-319-52096-4  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Zambotti, Lorenzo.  |e author. 
245 1 0 |a Random Obstacle Problems  |h [electronic resource] :  |b École d'Été de Probabilités de Saint-Flour XLV - 2015 /  |c by Lorenzo Zambotti. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a IX, 162 p. 20 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2181 
505 0 |a 1 Introduction -- 2 The reflecting Brownian motion -- 3 Bessel processes -- 4 The stochastic heat equation -- 5 Obstacle problems -- 6 Integration by Parts Formulae -- 7 The contact set -- References. 
520 |a Studying the fine properties of solutions to Stochastic (Partial) Differential Equations with reflection at a boundary, this book begins with a discussion of classical one-dimensional diffusions as the reflecting Brownian motion, devoting a chapter to Bessel processes, and moves on to function-valued solutions to SPDEs. Inspired by the classical stochastic calculus for diffusions, which is unfortunately still unavailable in infinite dimensions, it uses integration by parts formulae on convex sets of paths in order to describe the behaviour of the solutions at the boundary and the contact set between the solution and the obstacle. The text may serve as an introduction to space-time white noise, SPDEs and monotone gradient systems. Numerous open research problems in both classical and new topics are proposed. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319520957 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2181 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-52096-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)