Genetic Algorithm Essentials

This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts over...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kramer, Oliver (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Studies in Computational Intelligence, 679
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02730nam a22004575i 4500
001 978-3-319-52156-5
003 DE-He213
005 20170107164520.0
007 cr nn 008mamaa
008 170107s2017 gw | s |||| 0|eng d
020 |a 9783319521565  |9 978-3-319-52156-5 
024 7 |a 10.1007/978-3-319-52156-5  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Kramer, Oliver.  |e author. 
245 1 0 |a Genetic Algorithm Essentials  |h [electronic resource] /  |c by Oliver Kramer. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a IX, 92 p. 38 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 679 
505 0 |a Part I: Foundations -- Introduction -- Genetic Algorithms -- Parameters -- Part II: Solution Spaces -- Multimodality -- Constraints -- Multiple Objectives -- Part III: Advanced Concepts -- Theory -- Machine Learning -- Applications -- Part IV: Ending -- Summary and Outlook -- Index -- References. 
520 |a This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319521558 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 679 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-52156-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)