Granular-Relational Data Mining How to Mine Relational Data in the Paradigm of Granular Computing? /

This book provides two general granular computing approaches to mining relational data, the first of which uses abstract descriptions of relational objects to build their granular representation, while the second extends existing granular data mining solutions to a relational case. Both approaches m...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hońko, Piotr (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Studies in Computational Intelligence, 702
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03470nam a22004575i 4500
001 978-3-319-52751-2
003 DE-He213
005 20170203155603.0
007 cr nn 008mamaa
008 170203s2017 gw | s |||| 0|eng d
020 |a 9783319527512  |9 978-3-319-52751-2 
024 7 |a 10.1007/978-3-319-52751-2  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Hońko, Piotr.  |e author. 
245 1 0 |a Granular-Relational Data Mining  |h [electronic resource] :  |b How to Mine Relational Data in the Paradigm of Granular Computing? /  |c by Piotr Hońko. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XV, 123 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 702 
505 0 |a Preface -- Chapter 1: Introduction -- Part I: Generalized Related Set Based Approach -- Chapter 2: Information System for Relational Data -- Chapter 3: Properties of Granular-Relational Data Mining Framework -- Chapter 4: Association Discovery and Classification Rule Mining -- Chapter 5: Rough-Granular Computing -- Part II: Description Language Based Approach -- Chapter 6: Compound Information Systems -- Chapter 7: From Granular-Data Mining Framework to its Relational Version -- Chapter 8: Relation-Based Granules -- Chapter 9: Compound Approximation Spaces -- Conclusions -- References -- Index. 
520 |a This book provides two general granular computing approaches to mining relational data, the first of which uses abstract descriptions of relational objects to build their granular representation, while the second extends existing granular data mining solutions to a relational case. Both approaches make it possible to perform and improve popular data mining tasks such as classification, clustering, and association discovery. How can different relational data mining tasks best be unified? How can the construction process of relational patterns be simplified? How can richer knowledge from relational data be discovered? All these questions can be answered in the same way: by mining relational data in the paradigm of granular computing! This book will allow readers with previous experience in the field of relational data mining to discover the many benefits of its granular perspective. In turn, those readers familiar with the paradigm of granular computing will find valuable insights on its application to mining relational data. Lastly, the book offers all readers interested in computational intelligence in the broader sense the opportunity to deepen their understanding of the newly emerging field granular-relational data mining. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319527505 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 702 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-52751-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)