Design of Interpretable Fuzzy Systems

This book shows that the term “interpretability” goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cpałka, Krzysztof (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Studies in Computational Intelligence, 684
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03292nam a22004575i 4500
001 978-3-319-52881-6
003 DE-He213
005 20170202121235.0
007 cr nn 008mamaa
008 170202s2017 gw | s |||| 0|eng d
020 |a 9783319528816  |9 978-3-319-52881-6 
024 7 |a 10.1007/978-3-319-52881-6  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Cpałka, Krzysztof.  |e author. 
245 1 0 |a Design of Interpretable Fuzzy Systems  |h [electronic resource] /  |c by Krzysztof Cpałka. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XI, 196 p. 65 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 684 
505 0 |a Preface -- Acknowledgements -- Chapter1: Introduction -- Chapter2: Selected topics in fuzzy systems designing -- Chapter3: Introduction to fuzzy system interpretability -- Chapter4: Improving fuzzy systems interpretability by appropriate selection of their structure -- Chapter5: Interpretability of fuzzy systems designed in the process of gradient learning -- Chapter6: Interpretability of fuzzy systems designed in the process of evolutionary learning -- Chapter7: Case study: interpretability of fuzzy systems applied to nonlinear modelling and control -- Chapter8: Case study: interpretability of fuzzy systems applied to identity verification -- Chapter9: Concluding remarks and future perspectives -- Index. 
520 |a This book shows that the term “interpretability” goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required accuracy using a less complex rule base. The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms. It also demonstrates how to eliminate various system components, such as inputs, rules and fuzzy sets, whose reduction does not adversely affect system accuracy. It illustrates the performance of the developed algorithms and methods with commonly used benchmarks. The book provides valuable tools for possible applications in many fields including expert systems, automatic control and robotics. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319528809 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 684 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-52881-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)