The Three-Body Problem and the Equations of Dynamics Poincaré’s Foundational Work on Dynamical Systems Theory /

Here is an accurate and readable translation of a seminal article by Henri Poincaré that is a classic in the study of dynamical systems popularly called chaos theory. In an effort to understand the stability of orbits in the solar system, Poincaré applied a Hamiltonian formulation to the equations o...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Poincaré, Henri (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Astrophysics and Space Science Library, 443
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03177nam a22005295i 4500
001 978-3-319-52899-1
003 DE-He213
005 20171107142805.0
007 cr nn 008mamaa
008 170512s2017 gw | s |||| 0|eng d
020 |a 9783319528991  |9 978-3-319-52899-1 
024 7 |a 10.1007/978-3-319-52899-1  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Poincaré, Henri.  |e author. 
245 1 4 |a The Three-Body Problem and the Equations of Dynamics  |h [electronic resource] :  |b Poincaré’s Foundational Work on Dynamical Systems Theory /  |c by Henri Poincaré. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XXII, 248 p. 9 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Astrophysics and Space Science Library,  |x 0067-0057 ;  |v 443 
505 0 |a Translator's Preface -- Author's Preface -- Part I. Review -- Chapter 1 General Properties of the Differential Equations -- Chapter 2 Theory of Integral Invariants -- Chapter 3 Theory of Periodic Solutions -- Part II. Equations of Dynamics and the N-Body Problem -- Chapter 4 Study of the Case with Only Two Degrees of Freedom -- Chapter 5 Study of the Asymptotic Surfaces -- Chapter 6 Various Results -- Chapter 7 Attempts at Generalization -- Erratum. References -- Index. . 
520 |a Here is an accurate and readable translation of a seminal article by Henri Poincaré that is a classic in the study of dynamical systems popularly called chaos theory. In an effort to understand the stability of orbits in the solar system, Poincaré applied a Hamiltonian formulation to the equations of planetary motion and studied these differential equations in the limited case of three bodies to arrive at properties of the equations’ solutions, such as orbital resonances and horseshoe orbits.  Poincaré wrote for professional mathematicians and astronomers interested in celestial mechanics and differential equations. Contemporary historians of math or science and researchers in dynamical systems and planetary motion with an interest in the origin or history of their field will find his work fascinating. . 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Astrophysics. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Statistical Physics and Dynamical Systems. 
650 2 4 |a Astrophysics and Astroparticles. 
650 2 4 |a History and Philosophical Foundations of Physics. 
650 2 4 |a Planetary Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319528984 
830 0 |a Astrophysics and Space Science Library,  |x 0067-0057 ;  |v 443 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-52899-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)