Python for Graph and Network Analysis

This research monograph provides the means to learn the theory and practice of graph and network analysis using the Python programming language. The social network analysis techniques, included, will help readers to efficiently analyze social data from Twitter, Facebook, LiveJournal, GitHub and many...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Al-Taie, Mohammed Zuhair (Συγγραφέας), Kadry, Seifedine (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Advanced Information and Knowledge Processing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03328nam a22004935i 4500
001 978-3-319-53004-8
003 DE-He213
005 20170320102207.0
007 cr nn 008mamaa
008 170320s2017 gw | s |||| 0|eng d
020 |a 9783319530048  |9 978-3-319-53004-8 
024 7 |a 10.1007/978-3-319-53004-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.E94 
072 7 |a UYD  |2 bicssc 
072 7 |a COM074000  |2 bisacsh 
082 0 4 |a 004.24  |2 23 
100 1 |a Al-Taie, Mohammed Zuhair.  |e author. 
245 1 0 |a Python for Graph and Network Analysis  |h [electronic resource] /  |c by Mohammed Zuhair Al-Taie, Seifedine Kadry. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XIII, 203 p. 320 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Information and Knowledge Processing,  |x 1610-3947 
505 0 |a Theoretical Concepts of Network Analysis -- Network Basics -- Graph Theory -- Social Networks -- Node-Level Analysis -- Group-Level Analysis -- Network-Level Analysis -- Information Diffusion in Social Networks -- Appendix A: Python Tutorial -- Appendix B: NetworkX Tutorial. 
520 |a This research monograph provides the means to learn the theory and practice of graph and network analysis using the Python programming language. The social network analysis techniques, included, will help readers to efficiently analyze social data from Twitter, Facebook, LiveJournal, GitHub and many others at three levels of depth: ego, group, and community. They will be able to analyse militant and revolutionary networks and candidate networks during elections. For instance, they will learn how the Ebola virus spread through communities. Practically, the book is suitable for courses on social network analysis in all disciplines that use social methodology. In the study of social networks, social network analysis makes an interesting interdisciplinary research area, where computer scientists and sociologists bring their competence to a level that will enable them to meet the challenges of this fast-developing field. Computer scientists have the knowledge to parse and process data while sociologists have the experience that is required for efficient data editing and interpretation. Social network analysis has successfully been applied in different fields such as health, cyber security, business, animal social networks, information retrieval, and communications. . 
650 0 |a Computer science. 
650 0 |a Computer system failures. 
650 0 |a Application software. 
650 1 4 |a Computer Science. 
650 2 4 |a System Performance and Evaluation. 
650 2 4 |a Computer Appl. in Social and Behavioral Sciences. 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a Python. 
700 1 |a Kadry, Seifedine.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319530031 
830 0 |a Advanced Information and Knowledge Processing,  |x 1610-3947 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-53004-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)