Stochastic Optimal Control in Infinite Dimension Dynamic Programming and HJB Equations /

Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Fabbri, Giorgio (Συγγραφέας), Gozzi, Fausto (Συγγραφέας), Święch, Andrzej (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Probability Theory and Stochastic Modelling, 82
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03963nam a22006015i 4500
001 978-3-319-53067-3
003 DE-He213
005 20180116153639.0
007 cr nn 008mamaa
008 170623s2017 gw | s |||| 0|eng d
020 |a 9783319530673  |9 978-3-319-53067-3 
024 7 |a 10.1007/978-3-319-53067-3  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 |a Fabbri, Giorgio.  |e author. 
245 1 0 |a Stochastic Optimal Control in Infinite Dimension  |h [electronic resource] :  |b Dynamic Programming and HJB Equations /  |c by Giorgio Fabbri, Fausto Gozzi, Andrzej Święch. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XXIII, 916 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability Theory and Stochastic Modelling,  |x 2199-3130 ;  |v 82 
505 0 |a Preface -- 1.Preliminaries on stochastic calculus in infinite dimensions -- 2.Optimal control problems and examples -- 3.Viscosity solutions -- 4.Mild solutions in spaces of continuous functions -- 5.Mild solutions in L2 spaces -- 6.HJB Equations through Backward Stochastic Differential Equations (by M. Fuhrman and G. Tessitore) -- Appendix A, B, C, D, E -- Bibliography. 
520 |a Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Partial differential equations. 
650 0 |a System theory. 
650 0 |a Calculus of variations. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Functional Analysis. 
700 1 |a Gozzi, Fausto.  |e author. 
700 1 |a Święch, Andrzej.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319530666 
830 0 |a Probability Theory and Stochastic Modelling,  |x 2199-3130 ;  |v 82 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-53067-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)