Neural Connectomics Challenge

This book illustrates the thrust of the scientific community to use machine learning concepts for tackling a complex problem: given time series of neuronal spontaneous activity, which is the underlying connectivity between the neurons in the network? The contributing authors also develop tools for t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Battaglia, Demian (Επιμελητής έκδοσης), Guyon, Isabelle (Επιμελητής έκδοσης), Lemaire, Vincent (Επιμελητής έκδοσης), Orlandi, Javier (Επιμελητής έκδοσης), Ray, Bisakha (Επιμελητής έκδοσης), Soriano, Jordi (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:The Springer Series on Challenges in Machine Learning,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03659nam a22005415i 4500
001 978-3-319-53070-3
003 DE-He213
005 20170504134113.0
007 cr nn 008mamaa
008 170504s2017 gw | s |||| 0|eng d
020 |a 9783319530703  |9 978-3-319-53070-3 
024 7 |a 10.1007/978-3-319-53070-3  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Neural Connectomics Challenge  |h [electronic resource] /  |c edited by Demian Battaglia, Isabelle Guyon, Vincent Lemaire, Javier Orlandi, Bisakha Ray, Jordi Soriano. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a X, 117 p. 28 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a The Springer Series on Challenges in Machine Learning,  |x 2520-131X 
505 0 |a First Connectomics Challenge: From Imaging to Connectivity -- Simple Connectome Inference from Partial Correlation Statistics in Calcium Imaging -- Supervised Neural Network Structure Recovery -- Signal Correlation Prediction Using Convolutional Neural Networks -- Reconstruction of Excitatory Neuronal Connectivity via Metric Score Pooling and Regularization -- Neural Connectivity Reconstruction from Calcium Imaging Signal using Random Forest with Topological Features -- Efficient Combination of Pairwise Feature Networks -- Predicting Spiking Activities in DLS Neurons with Linear-Nonlinear-Poisson Model -- SuperSlicing Frame Restoration for Anisotropic ssTEM and Video Data -- Supplemental Information. 
520 |a This book illustrates the thrust of the scientific community to use machine learning concepts for tackling a complex problem: given time series of neuronal spontaneous activity, which is the underlying connectivity between the neurons in the network? The contributing authors also develop tools for the advancement of neuroscience through machine learning techniques, with a focus on the major open problems in neuroscience. While the techniques have been developed for a specific application, they address the more general problem of network reconstruction from observational time series, a problem of interest in a wide variety of domains, including econometrics, epidemiology, and climatology, to cite only a few. < The book is designed for the mathematics, physics and computer science communities that carry out research in neuroscience problems. The content is also suitable for the machine learning community because it exemplifies how to approach the same problem from different perspectives. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Image processing. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Image Processing and Computer Vision. 
700 1 |a Battaglia, Demian.  |e editor. 
700 1 |a Guyon, Isabelle.  |e editor. 
700 1 |a Lemaire, Vincent.  |e editor. 
700 1 |a Orlandi, Javier.  |e editor. 
700 1 |a Ray, Bisakha.  |e editor. 
700 1 |a Soriano, Jordi.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319530697 
830 0 |a The Springer Series on Challenges in Machine Learning,  |x 2520-131X 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-53070-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)