Introduction to Hamiltonian Dynamical Systems and the N-Body Problem

This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with appl...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Meyer, Kenneth R. (Συγγραφέας), Offin, Daniel C. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Έκδοση:3rd ed. 2017.
Σειρά:Applied Mathematical Sciences, 90
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04190nam a22005415i 4500
001 978-3-319-53691-0
003 DE-He213
005 20180213141031.0
007 cr nn 008mamaa
008 170504s2017 gw | s |||| 0|eng d
020 |a 9783319536910  |9 978-3-319-53691-0 
024 7 |a 10.1007/978-3-319-53691-0  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Meyer, Kenneth R.  |e author. 
245 1 0 |a Introduction to Hamiltonian Dynamical Systems and the N-Body Problem  |h [electronic resource] /  |c by Kenneth R. Meyer, Daniel C. Offin. 
250 |a 3rd ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XIII, 384 p. 40 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 90 
505 0 |a Beginnings -- Hamiltonian Systems -- Celestial Mechanics -- The Restricted Problem -- Topics in Linear Theory -- Local Geometric Theory -- Symplectic Geometry -- Special Coordinates -- Poincaré’s Continuation Method -- Normal Forms -- Bifurcations of Periodic Orbits -- Stability and KAM Theory -- Variational Techniques. 
520 |a This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. … It is a well-organized and accessible introduction to the subject … . This is an attractive book … ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic … and is sure to excite future generations of readers. … This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. … it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d). 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Physics. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Vibration, Dynamical Systems, Control. 
700 1 |a Offin, Daniel C.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319536903 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 90 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-53691-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)