Algorithmic Differentiation in Finance Explained

This book provides the first practical guide to the function and implementation of algorithmic differentiation in finance. Written in a highly accessible way, Algorithmic Differentiation Explained will take readers through all the major applications of AD in the derivatives setting with a focus on i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Henrard, Marc (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Palgrave Macmillan, 2017.
Σειρά:Financial Engineering Explained
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03093nam a22004095i 4500
001 978-3-319-53979-9
003 DE-He213
005 20170904115507.0
007 cr nn 008mamaa
008 170904s2017 gw | s |||| 0|eng d
020 |a 9783319539799  |9 978-3-319-53979-9 
024 7 |a 10.1007/978-3-319-53979-9  |2 doi 
040 |d GrThAP 
100 1 |a Henrard, Marc.  |e author. 
245 1 0 |a Algorithmic Differentiation in Finance Explained  |h [electronic resource] /  |c by Marc Henrard. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Palgrave Macmillan,  |c 2017. 
300 |a XIII, 103 p. 7 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Financial Engineering Explained 
505 0 |a Chapter1 Introduction -- Chapter2 The Principles of Algorithmic Differentiation -- Chapter3 Applications to Finance -- Chapter4 Automated Algorithmic differentiation -- Chapter5 Derivatives to Non-inputs and Non-derivatives to Inputs -- Chapter 6 Calibration. 
520 |a This book provides the first practical guide to the function and implementation of algorithmic differentiation in finance. Written in a highly accessible way, Algorithmic Differentiation Explained will take readers through all the major applications of AD in the derivatives setting with a focus on implementation.  Algorithmic Differentiation (AD) has been popular in engineering and computer science, in areas such as fluid dynamics and data assimilation for many years.  Over the last decade, it has been increasingly (and successfully) applied to financial risk management, where it provides an efficient way to obtain financial instrument price derivatives with respect to the data inputs. Calculating derivatives exposure across a portfolio is no simple task.  It requires many complex calculations and a large amount of computer power, which in prohibitively expensive and can be time consuming.  Algorithmic differentiation techniques can be very successfully in computing Greeks and sensitivities of a portfolio with machine precision. Written by a leading practitioner who works and programmes AD, it offers a practical analysis of all the major applications of AD in the derivatives setting and guides the reader towards implementation.  Open source code of the examples is provided with the book, with which readers can experiment and perform their own test scenarios without writing the related code themselves. 
650 0 |a Finance. 
650 0 |a Financial engineering. 
650 0 |a Economics, Mathematical. 
650 1 4 |a Finance. 
650 2 4 |a Financial Engineering. 
650 2 4 |a Quantitative Finance. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319539782 
830 0 |a Financial Engineering Explained 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-53979-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ECF 
950 |a Economics and Finance (Springer-41170)