Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations VIASM 2016 /

Consisting of two parts, the first part of this volume is an essentially self-contained exposition of the geometric aspects of local and global regularity theory for the Monge–Ampère and linearized Monge–Ampère equations. As an application, we solve the second boundary value problem of the prescribe...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Le, Nam Q. (Συγγραφέας), Mitake, Hiroyoshi (Επιμελητής έκδοσης), Tran, Hung V. (Επιμελητής έκδοσης)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Lecture Notes in Mathematics, 2183
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03186nam a22005295i 4500
001 978-3-319-54208-9
003 DE-He213
005 20170615153035.0
007 cr nn 008mamaa
008 170615s2017 gw | s |||| 0|eng d
020 |a 9783319542089  |9 978-3-319-54208-9 
024 7 |a 10.1007/978-3-319-54208-9  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Le, Nam Q.  |e author. 
245 1 0 |a Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations  |h [electronic resource] :  |b VIASM 2016 /  |c by Nam Q. Le, Hiroyoshi Mitake, Hung V. Tran ; edited by Hiroyoshi Mitake, Hung V. Tran. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a VII, 228 p. 16 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2183 
520 |a Consisting of two parts, the first part of this volume is an essentially self-contained exposition of the geometric aspects of local and global regularity theory for the Monge–Ampère and linearized Monge–Ampère equations. As an application, we solve the second boundary value problem of the prescribed affine mean curvature equation, which can be viewed as a coupling of the latter two equations. Of interest in its own right, the linearized Monge–Ampère equation also has deep connections and applications in analysis, fluid mechanics and geometry, including the semi-geostrophic equations in atmospheric flows, the affine maximal surface equation in affine geometry and the problem of finding Kahler metrics of constant scalar curvature in complex geometry. Among other topics, the second part provides a thorough exposition of the large time behavior and discounted approximation of Hamilton–Jacobi equations, which have received much attention in the last two decades, and a new approach to the subject, the nonlinear adjoint method, is introduced. The appendix offers a short introduction to the theory of viscosity solutions of first-order Hamilton–Jacobi equations. . 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Differential geometry. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Differential Geometry. 
700 1 |a Mitake, Hiroyoshi.  |e author. 
700 1 |a Tran, Hung V.  |e author. 
700 1 |a Mitake, Hiroyoshi.  |e editor. 
700 1 |a Tran, Hung V.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319542072 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2183 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-54208-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)