Bayesian Data Analysis for Animal Scientists The Basics /
In this book, we provide an easy introduction to Bayesian inference using MCMC techniques, making most topics intuitively reasonable and deriving to appendixes the more complicated matters. The biologist or the agricultural researcher does not normally have a background in Bayesian statistics, havin...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2017.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Foreword
- Notation
- 1. Do we understand classical statistics?
- 2. The Bayesian choice
- 3. Posterior distributions
- 4. MCMC
- 5. The “baby” model
- 6. The linear model. I. The “fixed” effects model
- 7. The linear model. II. The “mixed” model
- 8. A scope of the possibilities of Bayesian inference + MCMC
- 9. Prior information
- 10. Model choice
- Appendix
- References.