|
|
|
|
LEADER |
04059nam a22004455i 4500 |
001 |
978-3-319-54313-0 |
003 |
DE-He213 |
005 |
20170421180210.0 |
007 |
cr nn 008mamaa |
008 |
170421s2017 gw | s |||| 0|eng d |
020 |
|
|
|a 9783319543130
|9 978-3-319-54313-0
|
024 |
7 |
|
|a 10.1007/978-3-319-54313-0
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a TK7888.4
|
072 |
|
7 |
|a TJFC
|2 bicssc
|
072 |
|
7 |
|a TEC008010
|2 bisacsh
|
082 |
0 |
4 |
|a 621.3815
|2 23
|
245 |
1 |
0 |
|a Neuro-inspired Computing Using Resistive Synaptic Devices
|h [electronic resource] /
|c edited by Shimeng Yu.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2017.
|
300 |
|
|
|a XI, 269 p. 190 illus., 79 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
505 |
0 |
|
|a Chapter1: Introduction to Neuro-Inspired Computing using Resistive Synaptic Devices -- Part I: Device-level Demonstrations of Resistive Synaptic Devices -- Chapter2: Phase Change Memory based Synaptic Devices -- Chapter3: Pr0.7Ca0.3MnO3 (PCMO) based Synaptic Devices -- Chapter4: TaOx/TiO2 based Synaptic Devices -- Part II: Array-level Demonstrations of Resistive Synaptic Devices and Neural Networks -- Chapter5: Training and Inference in Hopfield Network using 10×10 Phase Change Synaptic Array -- Chapter6: Experimental Demonstration of Firing-Rate Neural Networks based on Metal-Oxide Memristive Crossbars -- Chapter7: Weight Tuning of Resistive Synaptic Devices and Convolution Kernel Operation on 12×12 Cross-Point Array -- Chapter8: Spiking Neural Network with 256×256 PCM Array -- Part III: Circuit, Architecture and Algorithm-level Design of Resistive Synaptic Devices based Neuromorphic System -- Chapter9: Peripheral Circuit Design Considerations of Neuro-inspired Architectures -- Chapter10: Processing-in-Memory Architecture Design for Accelerating Neuro-Inspired Algorithms -- Chapter11: Multi-layer Perceptron Algorithm: Impact of Non-Ideal Conductance and Area-Efficient Peripheral Circuits -- Chapter12: Impact of Non-Ideal Resistive Synaptic Device Behaviors on Implementation of Sparse Coding Algorithm -- Chapter13: Binary OxRAM/CBRAM Memories for Efficient Implementations of Embedded Neuromorphic Circuits.
|
520 |
|
|
|a This book summarizes the recent breakthroughs in hardware implementation of neuro-inspired computing using resistive synaptic devices. The authors describe how two-terminal solid-state resistive memories can emulate synaptic weights in a neural network. Readers will benefit from state-of-the-art summaries of resistive synaptic devices, from the individual cell characteristics to the large-scale array integration. This book also discusses peripheral neuron circuits design challenges and design strategies. Finally, the authors describe the impact of device non-ideal properties (e.g. noise, variation, yield) and their impact on the learning performance at the system-level, using a device-algorithm co-design methodology. • Provides single-source reference to recent breakthroughs in resistive synaptic devices, not only at individual cell-level, but also at integrated array-level; • Includes detailed discussion of the peripheral circuits and array architecture design of the neuro-crossbar system; • Focuses on new experimental results that are likely to solve practical, artificial intelligent problems, such as image classification.
|
650 |
|
0 |
|a Engineering.
|
650 |
|
0 |
|a Microprocessors.
|
650 |
|
0 |
|a Electronic circuits.
|
650 |
1 |
4 |
|a Engineering.
|
650 |
2 |
4 |
|a Circuits and Systems.
|
650 |
2 |
4 |
|a Electronic Circuits and Devices.
|
650 |
2 |
4 |
|a Processor Architectures.
|
700 |
1 |
|
|a Yu, Shimeng.
|e editor.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319543123
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-319-54313-0
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-ENG
|
950 |
|
|
|a Engineering (Springer-11647)
|