Uncertainty Quantification An Accelerated Course with Advanced Applications in Computational Engineering /

This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties wi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Soize, Christian (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Interdisciplinary Applied Mathematics, 47
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03830nam a22005055i 4500
001 978-3-319-54339-0
003 DE-He213
005 20170424115217.0
007 cr nn 008mamaa
008 170424s2017 gw | s |||| 0|eng d
020 |a 9783319543390  |9 978-3-319-54339-0 
024 7 |a 10.1007/978-3-319-54339-0  |2 doi 
040 |d GrThAP 
050 4 |a QA71-90 
072 7 |a PDE  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 004  |2 23 
100 1 |a Soize, Christian.  |e author. 
245 1 0 |a Uncertainty Quantification  |h [electronic resource] :  |b An Accelerated Course with Advanced Applications in Computational Engineering /  |c by Christian Soize. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XXII, 329 p. 110 illus., 86 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 47 
505 0 |a Fundamental Notions in Stochastic Modeling of Uncertainties and their Propagation in Computational Models -- Elements of Probability Theory -- Markov Process and Stochastic Differential Equation -- MCMC Methods for Generating Realizations and for Estimating the Mathematical Expectation of Nonlinear Mappings of Random Vectors -- Fundamental Probabilistic Tools for Stochastic Modeling of Uncertainties -- Brief Overview of Stochastic Solvers for the Propagation of Uncertainties -- Fundamental Tools for Statistical Inverse Problems -- Uncertainty Quantification in Computational Structural Dynamics and Vibroacoustics -- Robust Analysis with Respect to the Uncertainties for Analysis, Updating, Optimization, and Design -- Random Fields and Uncertainty Quantification in Solid Mechanics of Continuum Media. 
520 |a This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. < This book is intended to be a graduate-level textbook for students as well as professionals interested in the theory, computation, and applications of risk and prediction in science and engineering fields. 
650 0 |a Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Probabilities. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319543383 
830 0 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 47 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-54339-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)