Time-Series Prediction and Applications A Machine Intelligence Approach /

This book presents machine learning and type-2 fuzzy sets for the prediction of time-series with a particular focus on business forecasting applications. It also proposes new uncertainty management techniques in an economic time-series using type-2 fuzzy sets for prediction of the time-series at a g...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Konar, Amit (Συγγραφέας), Bhattacharya, Diptendu (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Intelligent Systems Reference Library, 127
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03305nam a22004935i 4500
001 978-3-319-54597-4
003 DE-He213
005 20170325104859.0
007 cr nn 008mamaa
008 170325s2017 gw | s |||| 0|eng d
020 |a 9783319545974  |9 978-3-319-54597-4 
024 7 |a 10.1007/978-3-319-54597-4  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Konar, Amit.  |e author. 
245 1 0 |a Time-Series Prediction and Applications  |h [electronic resource] :  |b A Machine Intelligence Approach /  |c by Amit Konar, Diptendu Bhattacharya. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XVIII, 242 p. 69 illus., 13 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 127 
505 0 |a An Introduction to Time-Series Prediction -- Prediction Using Self-Adaptive Interval Type-2 Fuzzy Sets -- Handling Multiple Factors in the Antecedent of Type-2 Fuzzy Rules -- Learning Structures in an Economic Time-Series for Forecasting Applications -- Grouping of First-Order Transition Rules for Time-Series Prediction by Fuzzy-induced Neural Regression -- Conclusions and Future Directions. . 
520 |a This book presents machine learning and type-2 fuzzy sets for the prediction of time-series with a particular focus on business forecasting applications. It also proposes new uncertainty management techniques in an economic time-series using type-2 fuzzy sets for prediction of the time-series at a given time point from its preceding value in fluctuating business environments. It employs machine learning to determine repetitively occurring similar structural patterns in the time-series and uses stochastic automaton to predict the most probabilistic structure at a given partition of the time-series. Such predictions help in determining probabilistic moves in a stock index time-series Primarily written for graduate students and researchers in computer science, the book is equally useful for researchers/professionals in business intelligence and stock index prediction. A background of undergraduate level mathematics is presumed, although not mandatory, for most of the sections. Exercises with tips are provided at the end of each chapter to the readers’ ability and understanding of the topics covered. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computer mathematics. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
700 1 |a Bhattacharya, Diptendu.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319545967 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 127 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-54597-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)