Outlier Ensembles An Introduction /

This book discusses a variety of methods for outlier ensembles and organizes them by the specific principles with which accuracy improvements are achieved. In addition, it covers the techniques with which such methods can be made more effective. A formal classification of these methods is provided,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Aggarwal, Charu C. (Συγγραφέας), Sathe, Saket (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03520nam a22004815i 4500
001 978-3-319-54765-7
003 DE-He213
005 20170406062611.0
007 cr nn 008mamaa
008 170406s2017 gw | s |||| 0|eng d
020 |a 9783319547657  |9 978-3-319-54765-7 
024 7 |a 10.1007/978-3-319-54765-7  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UT  |2 bicssc 
072 7 |a COM069000  |2 bisacsh 
072 7 |a COM032000  |2 bisacsh 
082 0 4 |a 005.7  |2 23 
100 1 |a Aggarwal, Charu C.  |e author. 
245 1 0 |a Outlier Ensembles  |h [electronic resource] :  |b An Introduction /  |c by Charu C. Aggarwal, Saket Sathe. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XVI, 276 p. 55 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a An Introduction to Outlier Ensembles -- Theory of Outlier Ensembles -- Variance Reduction in Outlier Ensembles -- Bias Reduction in Outlier Ensembles: The Guessing Game -- Model Combination Methods for Outlier Ensembles -- Which Outlier Detection Algorithm Should I Use? 
520 |a This book discusses a variety of methods for outlier ensembles and organizes them by the specific principles with which accuracy improvements are achieved. In addition, it covers the techniques with which such methods can be made more effective. A formal classification of these methods is provided, and the circumstances in which they work well are examined. The authors cover how outlier ensembles relate (both theoretically and practically) to the ensemble techniques used commonly for other data mining problems like classification. The similarities and (subtle) differences in the ensemble techniques for the classification and outlier detection problems are explored. These subtle differences do impact the design of ensemble algorithms for the latter problem. This book can be used for courses in data mining and related curricula. Many illustrative examples and exercises are provided in order to facilitate classroom teaching. A familiarity is assumed to the outlier detection problem and also to generic problem of ensemble analysis in classification. This is because many of the ensemble methods discussed in this book are adaptations from their counterparts in the classification domain. Some techniques explained in this book, such as wagging, randomized feature weighting, and geometric subsampling, provide new insights that are not available elsewhere. Also included is an analysis of the performance of various types of base detectors and their relative effectiveness. The book is valuable for researchers and practitioners for leveraging ensemble methods into optimal algorithmic design. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 0 |a Statistics. 
650 1 4 |a Computer Science. 
650 2 4 |a Information Systems and Communication Service. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Statistics and Computing/Statistics Programs. 
700 1 |a Sathe, Saket.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319547640 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-54765-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)