On Sets and Graphs Perspectives on Logic and Combinatorics /

This unique treatise presents an integrated perspective on the relationship and interplay of set theory and graph theory, providing an extensive selection of examples that highlight how methods from one theory can be used to better solve problems originated in the other. This combined viewpoint not...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Omodeo, Eugenio G. (Συγγραφέας), Policriti, Alberto (Συγγραφέας), Tomescu, Alexandru I. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04418nam a22005535i 4500
001 978-3-319-54981-1
003 DE-He213
005 20170512153614.0
007 cr nn 008mamaa
008 170512s2017 gw | s |||| 0|eng d
020 |a 9783319549811  |9 978-3-319-54981-1 
024 7 |a 10.1007/978-3-319-54981-1  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.L63 
050 4 |a QA76.5913 
050 4 |a QA76.63 
072 7 |a UM  |2 bicssc 
072 7 |a UYF  |2 bicssc 
072 7 |a COM051000  |2 bisacsh 
072 7 |a COM036000  |2 bisacsh 
082 0 4 |a 005.1015113  |2 23 
100 1 |a Omodeo, Eugenio G.  |e author. 
245 1 0 |a On Sets and Graphs  |h [electronic resource] :  |b Perspectives on Logic and Combinatorics /  |c by Eugenio G. Omodeo, Alberto Policriti, Alexandru I. Tomescu. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XIX, 275 p. 150 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Part I: Basics -- Membership and Edge Relations -- Sets, Graphs, and Set Universes -- Part II: Graphs as Sets -- The Undirected Structure Underlying Sets -- Graphs as Transitive Sets -- Part III: Sets as Graphs -- Counting and Encoding Sets -- Random Generation of Sets -- Infinite Sets and Finite Combinatorics -- Appendix: Excerpts from a Referee-Checked Proof-Script. 
520 |a This unique treatise presents an integrated perspective on the relationship and interplay of set theory and graph theory, providing an extensive selection of examples that highlight how methods from one theory can be used to better solve problems originated in the other. This combined viewpoint not only simplifies the manipulation of sets and enriches the potential of graphs, but also permits a more profound understanding of the multi-faceted nature of sets and graphs. Topics and features: Explores the interrelationships between sets and graphs and their applications to finite combinatorics, with a focus on proof methods and proof technology Introduces the fundamental graph-theoretical notions from the standpoint of both set theory and dyadic logic, and presents a short discussion on set universes Explains how, and under what circumstances, sets can conveniently model graphs, discussing set graphs and set-theoretic representations of claw-free graphs Investigates when it is convenient to represent sets by graphs, covering counting and encoding problems, the random generation of sets, and the analysis of infinite sets Presents excerpts of formal proofs concerning graphs, whose correctness was verified by means of an automated proof-assistant Contains numerous exercises, examples, definitions, problems and insight panels throughout the text This accessible textbook/reference offers an illuminating read for graduate students of computer science and mathematics. The work is also ideal as a self-study resource for other non-specialists pursuing a deeper understanding of the subject matter. Dr. Eugenio G. Omodeo is a professor in the Department of Mathematics and Geosciences at the University of Trieste, Italy. His other publications include the Springer title Computational Logic and Set Theory. Dr. Alberto Policriti is a Professor of Computer Science in the Department of Mathematics, Computer Science, and Physics at the University of Udine, Italy. Together with Dr. Eugenio G. Omodeo, he is co-author of the Springer title Set Theory for Computing. Dr. Alexandru I. Tomescu is postdoctoral researcher in the Department of Computer Science at the University of Helsinki, Finland. 
650 0 |a Computer science. 
650 0 |a Algorithms. 
650 0 |a Computer logic. 
650 0 |a Combinatorics. 
650 0 |a Graph theory. 
650 1 4 |a Computer Science. 
650 2 4 |a Logics and Meanings of Programs. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Graph Theory. 
650 2 4 |a Combinatorics. 
700 1 |a Policriti, Alberto.  |e author. 
700 1 |a Tomescu, Alexandru I.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319549804 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-54981-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)