Linear Regression

This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Olive, David J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02959nam a22004095i 4500
001 978-3-319-55252-1
003 DE-He213
005 20170418084506.0
007 cr nn 008mamaa
008 170418s2017 gw | s |||| 0|eng d
020 |a 9783319552521  |9 978-3-319-55252-1 
024 7 |a 10.1007/978-3-319-55252-1  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Olive, David J.  |e author. 
245 1 0 |a Linear Regression  |h [electronic resource] /  |c by David J. Olive. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XIV, 494 p. 57 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Multiple Linear Regression -- Building an MLR Model -- WLS and Generalized Least Squares -- One Way Anova -- The K Way Anova Model -- Block Designs -- Orthogonal Designs -- More on Experimental Designs -- Multivariate Models -- Theory for Linear Models -- Multivariate Linear Regression -- GLMs and GAMs -- Stuff for Students. 
520 |a This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response transformations for multiple linear regression or experimental design models. This text is for graduates and undergraduates with a strong mathematical background. The prerequisites for this text are linear algebra and a calculus based course in statistics. . 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319552507 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-55252-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)